ARC Centre for Engineered Quantum Systems (EQUS)
We propose and experimentally demonstrate a novel detection method that significantly improves the precision of real-time measurement of the three-dimensional displacement of a levitated dipolar scatterer. Our technique relies on the spatial mode decomposition of the light scattered by the levitated object, allowing us to simultaneously and selectively extract the position information of all translational degrees of freedom with minimal losses. To this end, we collect all the light back-scattered from a levitated nanoparticle using a parabolic mirror and couple it into a spatial mode sorter. The sorter effectively demultiplexes the information content of the scattered electric field, resulting in each of the nanoparticle's translational degrees of freedom being selectively encoded in the amplitude of orthogonal optical modes. We report measurement efficiencies of (ηtotx,ηtoty,ηtotz)=(0.14,0.16,0.32){(\eta_{^{\mathrm{tot}}}^{_{x}}, \eta_{^{\mathrm{tot}}}^{_{y}}, \eta_{^{\mathrm{tot}}}^{_{z}}) = (0.14, 0.16, 0.32)} >> 1/9, which should enable the 3D motional quantum ground state of a levitated optomechanical system. Further, we believe this technique opens up the possibility to implement coherent feedback control of a levitated nanoparticle.
There are no more papers matching your filters at the moment.