Algebra da Universidade de Lisboa
A semigroup is \emph{nilpotent} of degree 3 if it has a zero, every product of 3 elements equals the zero, and some product of 2 elements is non-zero. It is part of the folklore of semigroup theory that almost all finite semigroups are nilpotent of degree 3. We give formulae for the number of nilpotent semigroups of degree 3 with nNn\in\N elements up to equality, isomorphism, and isomorphism or anti-isomorphism. Likewise, we give formulae for the number of nilpotent commutative semigroups with nn elements up to equality and up to isomorphism.
There are no more papers matching your filters at the moment.