Keck Graduate Institute
Synthetic biology brings together concepts and techniques from engineering and biology. In this field, computer-aided design (CAD) is necessary in order to bridge the gap between computational modeling and biological data. An application named TinkerCell has been created in order to serve as a CAD tool for synthetic biology. TinkerCell is a visual modeling tool that supports a hierarchy of biological parts. Each part in this hierarchy consists of a set of attributes that define the part, such as sequence or rate constants. Models that are constructed using these parts can be analyzed using various C and Python programs that are hosted by TinkerCell via an extensive C and Python API. TinkerCell supports the notion of a module, which are networks with interfaces. Such modules can be connected to each other, forming larger modular networks. Because TinkerCell associates parameters and equations in a model with their respective part, parts can be loaded from databases along with their parameters and rate equations. The modular network design can be used to exchange modules as well as test the concept of modularity in biological systems. The flexible modeling framework along with the C and Python API allows TinkerCell to serve as a host to numerous third-party algorithms. TinkerCell is a free and open-source project under the Berkeley Software Distribution license. Downloads, documentation, and tutorials are available at this http URL.
Evolutionary adaptation is the process that increases the fit of a population to the fitness landscape it inhabits. As a consequence, evolutionary dynamics is shaped, constrained, and channeled, by that fitness landscape. Much work has been expended to understand the evolutionary dynamics of adapting populations, but much less is known about the structure of the landscapes. Here, we study the global and local structure of complex fitness landscapes of interacting loci that describe protein folds or sets of interacting genes forming pathways or modules. We find that in these landscapes, high peaks are more likely to be found near other high peaks, corroborating Kauffman's "Massif Central" hypothesis. We study the clusters of peaks as a function of the ruggedness of the landscape and find that this clustering allows peaks to form interconnected networks. These networks undergo a percolation phase transition as a function of minimum peak height, which indicates that evolutionary trajectories that take no more than two mutations to shift from peak to peak can span the entire genetic space. These networks have implications for evolution in rugged landscapes, allowing adaptation to proceed after a local fitness peak has been ascended.
Biological macromolecules including nucleic acids, proteins, and glycosaminoglycans are typically anionic and can span domains of up to hundreds of nanometers and even micron length scales. The structures exist in crowded environments that are dominated by weak multivalent electrostatic interactions that can be modeled using mean field continuum approaches that represent underlying molecular nanoscale biophysics. We develop such models for glycosaminoglycan brushes using both steady state modified Poisson-Boltzmann models and transient Poisson-Nernst-Planck models that incorporate important ion-specific (Hofmeister) effects. The results quantify how electroneutrality is attained through ion electrophoresis, dielectric decrement hydration forces, and ion-specific pairing. Brush-Salt interfacial profiles of the electrostatic potential as well as bound and unbound ions are characterized for imposed jump conditions across the interface. The models should be applicable to many intrinsically-disordered biophysical environments and are anticipated to provide insight into the design and development of therapeutics and drug-delivery vehicles to improve human health.
Polyelectrolyte brushes consist of a set of charged linear macromolecules each tethered at one end to a surface. An example is the glycocalyx which refers to hair-like negatively charged sugar molecules that coat the outside membrane of all cells. We consider the transport and equilibrium distribution of ions, and the resulting electrical potential, when such a brush is immersed in a salt buffer containing monovalent cations (sodium and/or potassium). The Gouy-Chapman model for ion screening at a charged surface captures the effects of the Coulombic force that drives ion electrophoresis and diffusion, but neglects non-Coulombic forces and ion pairing. By including the distinct binding affinities of these counter-ions with the brush, and their so-called Born radii, which account for Born forces acting on them when the permittivity is non-uniform, we propose modified Poisson-Nernst-Planck continuum models that show the distinct profiles that may result depending on those ion-specific properties.
There are no more papers matching your filters at the moment.