Key Laboratory for Modern Astronomy and Astrophysics
We report evolution of an atypical X-shaped flare ribbon which provides novel observational evidence of three-dimensional (3D) magnetic reconnection at a separator. The flare occurred on 2014 November 9. High-resolution slit-jaw 1330 A images from the Interface Region Imaging Spectrograph reveal four chromospheric flare ribbons that converge and form an X-shape. Flare brightening in the upper chromosphere spreads along the ribbons toward the center of the "X" (the X-point), and then spreads outward in a direction more perpendicular to the ribbons. These four ribbons are located in a quadrupolar magnetic field. Reconstruction of magnetic topology in the active region suggests the presence of a separator connecting to the X-point outlined by the ribbons. The inward motion of flare ribbons in the early stage therefore indicates 3D magnetic reconnection between two sets of non-coplanar loops that approach laterally, and reconnection proceeds downward along a section of vertical current sheet. Coronal loops are also observed by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory confirming the reconnection morphology illustrated by ribbon evolution.
In this paper, we present the imaging and spectroscopic observations of the simultaneous horizontal and vertical large-amplitude oscillation of a quiescent filament triggered by an EUV wave on 2022 October 02. Particularly, the filament oscillation involved winking phenomenon in Ha images and horizontal motions in EUV images. Originally, a filament and its overlying loops across AR 13110 and 13113 erupted with a highly inclined direction, resulting in an X1.0 flare and a non-radial CME. The fast lateral expansion of loops excited an EUV wave and the corresponding Moreton wave propagating northward. Once the EUV wavefront arrived at the quiescent filament, the filament began to oscillate coherently along the horizontal direction and the winking filament appeared concurrently in Ha images. The horizontal oscillation involved an initial amplitude of 10.2 Mm and a velocity amplitude of 46.5 km/s, lasting for 3 cycles with a period of 18.2 minutes and a damping time of 31.1 minutes. The maximum Doppler velocities of the oscillating filament are 18 km/s (redshift) and 24 km/s (blueshift), which was derived from the spectroscopic data provided by CHASE/HIS. The three-dimensional velocity of the oscillation is determined to be 50 km/s at an angle of 50 to the local photosphere plane. Based on the wave-filament interaction, the minimum energy of the EUV wave is estimated to be 2.7 10 20 J. Furthermore, this event provides evidence that Moreton wavesshould be excited by the highly inclined eruptions.
There are no more papers matching your filters at the moment.