Exoplanet imaging is a major challenge in astrophysics due to the need for high angular resolution and high contrast. We present a multi-scale statistical model for the nuisance component corrupting multivariate image series at high contrast. Integrated into a learnable architecture, it leverages the physics of the problem and enables the fusion of multiple observations of the same star in a way that is optimal in terms of detection signal-to-noise ratio. Applied to data from the VLT/SPHERE instrument, the method significantly improves the detection sensitivity and the accuracy of astrometric and photometric estimation.