´Ecole normale sup´erieure (ENS-PSL)
Deep learning for exoplanet detection and characterization by direct imaging at high contrast
Exoplanet imaging is a major challenge in astrophysics due to the need for high angular resolution and high contrast. We present a multi-scale statistical model for the nuisance component corrupting multivariate image series at high contrast. Integrated into a learnable architecture, it leverages the physics of the problem and enables the fusion of multiple observations of the same star in a way that is optimal in terms of detection signal-to-noise ratio. Applied to data from the VLT/SPHERE instrument, the method significantly improves the detection sensitivity and the accuracy of astrometric and photometric estimation.
View blog
Resources
There are no more papers matching your filters at the moment.