54th Research Institute of China Electronics Technology Group Corporation
High-mobility scenarios in next-generation wireless networks, such as those involving vehicular communications, require ultra-reliable and low-latency communications (URLLC). However, rapidly time-varying channels pose significant challenges to traditional OFDM-based systems due to the Doppler effect and channel aging. Orthogonal time frequency space (OTFS) modulation offers resilience by representing channels in the quasi-static delay-Doppler (DD) domain. This letter proposes a novel channel prediction framework for OTFS systems using a hybrid convolutional neural network and transformer (CNN-Transformer) architecture. The CNN extracts compact features that exploit the DD-domain sparsity of the channel matrices, while the transformer models temporal dependencies with causal masking for consistency. Simulation experiments under extreme 500500 \si{km/h} mobility conditions demonstrate that the proposed method outperforms state-of-the-art baselines, reducing the root mean square error and mean absolute error by 12.2%12.2\% and 9.4%9.4\%, respectively. These results demonstrate the effectiveness of DD-domain representations and the proposed model in accurately predicting channels in high-mobility scenarios, thereby supporting the stringent URLLC requirements in future wireless systems.
This paper proposes a relay satellite assisted low earth orbit (LEO) constellation non-orthogonal multiple access combined beamforming (R-NOMA-BF) communication system, where multiple antenna LEO satellites deliver information to ground non-orthogonal users. To measure the service quality, we formulate a resource allocation problem to minimize the second-order difference between the achievable capacity and user request traffic. Based on the above problem, joint optimization for LEO satellite-cell assignment factor, NOMA power and BF vector is taken into account. The optimization variables are analyzed with respect to feasibility and non-convexity. Additionally, we provide a pair of effective algorithms, i.e., doppler shift LEO satellite-cell assisted monotonic programming of NOMA with BF vector (D-mNOMA-BF) and ant colony pathfinding based NOMA exponential cone programming with BF vector (A-eNOMA-BF). Two compromise algorithms regarding the above are also presented. Numerical results show that: 1) D-mNOMA-BF and A-eNOMA-BF algorithms are superior to that of orthogonal multiple access based BF (OMA-BF) and polarization multiplexing schemes; 2) With the increasing number of antennas and single satellite power, R-NOMA-BF system is able to expand users satisfaction; and 3) By comparing various imperfect successive interference cancellation, the performance of A-mNOMA-BF algorithm exceeds D-mNOMA-BF.
There are no more papers matching your filters at the moment.