Polariton lasing is a promising phenomenon with potential applications in next-generation lasers that operate without the need for population inversion. Applying a perpendicular magnetic field to a quantum well (QW) significantly alters the properties of exciton-polaritons. In this theoretical study, we investigate how the lasing threshold of QW exciton-polaritons depends on the magnetic field. By modifying the exciton's effective mass and Rabi splitting, the magnetic field induces notable changes in the relaxation kinetics, which directly affect the lasing threshold. For low-energy pumping, an increase in the magnetic field delays the lasing threshold, while for high-energy pumping, the threshold is reached at much lower pump intensities. Furthermore, increasing both the pump energy and the magnetic field enhances relaxation efficiency, leading to a substantially larger number of condensed polaritons. Our result gives insights into the modulation of exciton-polariton condensation through magnetic fields, with potential implications for the design of low-threshold polariton lasers.