Erasmus University of Rotterdam
Lecture Notes on High Dimensional Linear Regression
These lecture notes cover advanced topics in linear regression, with an in-depth exploration of the existence, uniqueness, relations, computation, and non-asymptotic properties of the most prominent estimators in this setting. The covered estimators include least squares, ridgeless, ridge, and lasso. The content follows a proposition-proof structure, making it suitable for students seeking a formal and rigorous understanding of the statistical theory underlying machine learning methods.
View blog
Resources
Tail Risk Analysis for Financial Time Series
This book chapter illustrates how to apply extreme value statistics to financial time series data. Such data often exhibits strong serial dependence, which complicates assessment of tail risks. We discuss the two main approches to tail risk estimation, unconditional and conditional quantile forecasting. We use the S&P 500 index as a case study to assess serial (extremal) dependence, perform an unconditional and conditional risk analysis, and apply backtesting methods. Additionally, the chapter explores the impact of serial dependence on multivariate tail dependence.
View blog
Resources
Static and Dynamic BART for Rank-Order Data
Ranking lists are often provided at regular time intervals by one or multiple rankers in a range of applications, including sports, marketing, and politics. Most popular methods for rank-order data postulate a linear specification for the latent scores, which determine the observed ranks, and ignore the temporal dependence of the ranking lists. To address these issues, novel nonparametric static (ROBART) and autoregressive (ARROBART) models are introduced, with latent scores defined as nonlinear Bayesian additive regression tree functions of covariates. To make inferences in the dynamic ARROBART model, closed-form filtering, predictive, and smoothing distributions for the latent time-varying scores are derived. These results are applied in a Gibbs sampler with data augmentation for posterior inference. The proposed methods are shown to outperform existing competitors in simulation studies, and the advantages of the dynamic model are demonstrated by forecasts of weekly pollster rankings of NCAA football teams.
View blog
Resources
There are no more papers matching your filters at the moment.