Jisuan Institute of Technology
Large language models (LLMs) are reshaping automated program repair. We present a unified taxonomy that groups 62 recent LLM-based repair systems into four paradigms defined by parameter adaptation and control authority over the repair loop, and overlays two cross-cutting layers for retrieval and analysis augmentation. Prior surveys have either focused on classical software repair techniques, on LLMs in software engineering more broadly, or on subsets of LLM-based software repair, such as fine-tuning strategies or vulnerability repair. We complement these works by treating fine-tuning, prompting, procedural pipelines, and agentic frameworks as first-class paradigms and systematically mapping representative systems to each of these paradigms. We also consolidate evaluation practice on common benchmarks by recording benchmark scope, pass@k, and fault-localization assumptions to support a more meaningful comparison of reported success rates. We clarify trade-offs among paradigms in task alignment, deployment cost, controllability, and ability to repair multi-hunk or cross-file bugs. We discuss challenges in current LLM-based software repair and outline research directions. Our artifacts, including the representation papers and scripted survey pipeline, are publicly available at this https URL.
10
There are no more papers matching your filters at the moment.