Las Campanas Observatory
We present James Webb Space Telescope (JWST) NIRSpec 1.7--5.5 micron observations of SN~2024ggi at +285.51 and +385.27 days post-explosion. The late-time nebular spectra are dominated by emission lines from various ionization states of H, Ca, Ar, C, Mg, Ni, Co, and Fe. We also detect strong CO emission in both the first overtone and fundamental vibrational bands. Most atomic features exhibit asymmetric line profiles, indicating an aspherical explosion. Using observed fluxes combined with non-LTE radiative-transfer simulations, we develop a data-driven method that resolves the complex molecular-emission region, constrains its 3D structure, and reproduces high-fidelity spectral profiles. We find that, CO is mostly formed prior to +285d past explosion. The subsequent evolution is dominated by the evaporation of CO with CO mass varying from M(CO) of 8.7E-3 to 1.3E-3 Mo, and with instabilities growing from almost homogeneous to highly clumped (density contrast f_c of 1.2 to 2). The minimum velocity of CO only slightly decreases between epochs (v_1 of 1200 and 1100 km/sec), with the reference temperature dropping from T_1 of 2400 and 1900K.
We confirm the planetary nature of (1) TOI-5916 b and (2) TOI-6158 b, two Exoplanets Transiting M-dwarf Stars (GEMS), both discovered by the Transiting Exoplanet Survey Satellite (TESS). Both systems were confirmed with ground-based photometry (Red Buttes Observatory and Swope, respectively) and radial velocity data from the Habitable-zone Planet Finder. Their radii are R1=11.80.51+0.52 RR_{1}=11.8^{+0.52}_{-0.51}\text{ }R_{\oplus} and R2=10.41.11+2.70 RR_{2}=10.4^{+2.70}_{-1.11}\text{ }R_{\oplus} and masses are M1=219±28 MM_{1}=219\pm28\text{ }M_{\oplus} and M2=13518+19 MM_{2}=135^{+19}_{-18}\text{ }M_{\oplus}. Both planets have Saturn-like densities (ρ1=0.730.13+0.14g cm3\rho_{1} = 0.73^{+0.14}_{-0.13}\,\text{g cm}^{-3}, ρ2=0.660.23+0.41g cm3\rho_{2} = 0.66^{+0.41}_{-0.23}\,\text{g cm}^{-3}), which appears to be a growing trend among GEMS systems and, more generally, warm Jupiters. In confirming both of these exoplanets, we add to the growing evidence for a population of Saturn-density planets among the GEMS systems. We also find evidence for a preliminary trend in which GEMS exhibit systematically closer orbits compared to FGK giants.
The Galactic O-Star Spectroscopic Survey (GOSSS) is obtaining high quality R~2500 blue-violet spectroscopy of all Galactic stars ever classified as of O type with B < 12 and a significant fraction of those with B = 12-14. As of June 2013, we have obtained, processed, and classified 2653 spectra of 1593 stars, including all of the sample with B < 8 and most of the sample with B = 8-10, making GOSSS already the largest collection of high quality O-star optical spectra ever assembled by a factor of 3. We discuss the fraction of false positives (stars classified as O in previous works that do not belong to that class) and the implications of the observed magnitude distribution for the spatial distribution of massive stars and dust within a few kpc of the Sun. We also present new spectrograms for some of the interesting objects in the sample and show applications of GOSSS data to the study of the intervening ISM. Finally, we present the new version of the Galactic O-Star Catalog (GOSC), which incorporates the data in GOSSS-DR1, and we discuss our plans for MGB, an interactive spectral classification tool for OB stars.
We present optical and IR observations from maximum light until around 600 d of SN 2022jli, a peculiar SE SN showing two maxima, each one with a peak luminosity of about 3 x 10^{42} erg/s and separated by 50 d. The second maximum is followed by periodic undulations with a period of P ~ 12.5 days. The spectra and the photometric evolution of the first maximum are consistent with the behaviour of a standard SE SN with an ejecta mass of 1.5 +/- 0.4 Msun, and a nickel mass of 0.12 +/- 0.01 Msun. The optical spectra after 400 d correspond to a standard SN Ic event, and at late times SN 2022jli exhibits a significant drop in the optical luminosity implying that the physical phenomena that produced the secondary maximum has ceased to power the SN light curve. One possibility is that the second maximum is powered by a magnetar with an initial spin period of P=48.5 ms and a magnetic field of B = 8.5x10^{14} G, while the light curve periodic undulations could be produced by accretion of material from a companion star onto the neutron star in a binary system. The near-IR spectra shows clear 1st CO overtone emission from about 190 d after the first maximum, and it becomes undetected at 400 d. A significant near-IR excess from hot dust emission is detected at 238 d produced by either newly formed dust in the SN ejecta or due to a strong near-IR dust echo. Depending on the assumptions of the dust composition, the estimated dust mass is 2-16 x 10^{-4} Msun. The magnetar power of the second maximum can fit in a more general picture where magnetars are the power source of super-luminous SNe, could produce their frequent bumps and undulations, and where pulsars could produce the late time excess observed in some SE SNe. The detection of CO and the potential detection of dust formed in the ejecta of SN2022jli are important to understand the formation molecules and dust in the ejecta of SE SNe.
The eighteenth data release of the Sloan Digital Sky Surveys (SDSS) is the first one for SDSS-V, the fifth generation of the survey. SDSS-V comprises three primary scientific programs, or "Mappers": Milky Way Mapper (MWM), Black Hole Mapper (BHM), and Local Volume Mapper (LVM). This data release contains extensive targeting information for the two multi-object spectroscopy programs (MWM and BHM), including input catalogs and selection functions for their numerous scientific objectives. We describe the production of the targeting databases and their calibration- and scientifically-focused components. DR18 also includes ~25,000 new SDSS spectra and supplemental information for X-ray sources identified by eROSITA in its eFEDS field. We present updates to some of the SDSS software pipelines and preview changes anticipated for DR19. We also describe three value-added catalogs (VACs) based on SDSS-IV data that have been published since DR17, and one VAC based on the SDSS-V data in the eFEDS field.
We present ASTRODEEP-GS43, a new multiwavelength photometric catalogue of the GOODS-South field, which builds and improves upon the previously released CANDELS catalogue. We provide photometric fluxes and corresponding uncertainties in 43 optical and infrared bands (25 wide and 18 medium filters), as well as photometric redshifts and physical properties of the 34930 CANDELS HH-detected objects, plus an additional sample of 178 HH-dropout sources, of which 173 are KsKs-detected and 5 IRAC-detected. We keep the CANDELS photometry in 7 bands (CTIO UU, Hubble Space Telescope WFC3 and ISAAC-KK), and measure from scratch the fluxes in the other 36 (VIMOS, HST ACS, HAWK-I KsKs, Spitzer IRAC, and 23 from Subaru SuprimeCAM and Magellan-Baade Fourstar) with state-of-the-art techniques of template-fitting. We then compute new photometric redshifts with three different software tools, and take the median value as best estimate. We finally evaluate new physical parameters from SED fitting, comparing them to previously published ones. Comparing to a sample of 3931 high quality spectroscopic redshifts, for the new photo-zz's we obtain a normalized median absolute deviation (NMAD) of 0.015 with 3.01%\% of outliers (0.011, 0.22%\% on the bright end at I814I814<22.5), similarly to the best available published samples of photometric redshifts, such as the COSMOS UltraVISTA catalogue. The ASTRODEEP-GS43 results are in qualitative agreement with previously published catalogues of the GOODS-South field, improving on them particularly in terms of SED sampling and photometric redshift estimates. The catalogue is available for download from the Astrodeep website.
We report the discovery of the 1.008-day, ultra-short period (USP) super-Earth HD 213885b (TOI-141b) orbiting the bright (V=7.9V=7.9) star HD 213885 (TOI-141, TIC 403224672), detected using photometry from the recently launched TESS mission. Using FEROS, HARPS and CORALIE radial-velocities, we measure a precise mass of 8.8±0.68.8\pm0.6 MM_\oplus for this 1.74±0.051.74 \pm 0.05 RR_\oplus exoplanet, which provides enough information to constrain its bulk composition, which is similar to Earth's but enriched in iron. The radius, mass and stellar irradiation of HD 213885b are, given our data, very similar to 55 Cancri e, making this exoplanet a good target to perform comparative exoplanetology of short period, highly irradiated super-Earths. Our precise radial-velocities reveal an additional 4.784.78-day signal which we interpret as arising from a second, non-transiting planet in the system, HD 213885c (TOI-141c), whose minimum mass of 19.95±1.419.95\pm 1.4 MM_\oplus makes it consistent with being a Neptune-mass exoplanet. The HD 213885 system is very interesting from the perspective of future atmospheric characterization, being the second brightest star to host an ultra-short period transiting super-Earth (with the brightest star being, in fact, 55 Cancri). Prospects for characterization with present and future observatories are discussed.
We report the discovery and confirmation of two planets orbiting the metal-poor Sun-like star, HD 35843 (TOI 4189). HD 35843 c is a temperate sub-Neptune transiting planet with an orbital period of 46.96 days that was first identified by Planet Hunters TESS. We combine data from TESS and follow-up observations to rule out false-positive scenarios and validate the planet. We then use ESPRESSO radial velocities to confirm the planetary nature and characterize the planet's mass and orbit. Further analysis of these RVs reveals the presence of an additional planet, HD 35843 b, with a period of 9.90 days and a minimum mass of 5.84±0.845.84\pm0.84 MM_{\oplus}. For HD 35843 c, a joint photometric and spectroscopic analysis yields a radius of $2.54 \pm 0.08 R_{\oplus},amassof, a mass of 11.32 \pm 1.60 M_{\oplus}$, and an orbital eccentricity of e=0.15±0.07e = 0.15\pm0.07. With a bulk density of 3.80±0.703.80 \pm 0.70 g/cm3^3, the planet might be rocky with a substantial H2_2 atmosphere or it might be a ``water world". With an equilibrium temperature of \sim480 K, HD 35843 c is among the coolest 5%\sim 5\% of planets discovered by TESS. Combined with the host star's relative brightness (V= 9.4), HD 35843 c is a promising target for atmospheric characterization that will probe this sparse population of temperate sub-Neptunes.
ETH Zurich logoETH ZurichUniversity of Illinois at Urbana-Champaign logoUniversity of Illinois at Urbana-ChampaignUniversity of Pittsburgh logoUniversity of PittsburghUniversity of Cambridge logoUniversity of CambridgeSLAC National Accelerator LaboratoryUniversity of Chicago logoUniversity of ChicagoUniversity College London logoUniversity College LondonUniversity of Oxford logoUniversity of OxfordUniversity of Michigan logoUniversity of MichiganTexas A&M University logoTexas A&M UniversityUniversity of Texas at Austin logoUniversity of Texas at AustinArgonne National Laboratory logoArgonne National LaboratoryUniversity of Pennsylvania logoUniversity of PennsylvaniaBrookhaven National Laboratory logoBrookhaven National LaboratoryUniversity of Arizona logoUniversity of ArizonaUniversity of California, Davis logoUniversity of California, DavisInstituto de Física Teórica UAM-CSICDuke University logoDuke UniversityFermi National Accelerator LaboratoryMacquarie UniversityUniversity of QueenslandICREAUniversity of PortsmouthThe Ohio State University logoThe Ohio State UniversityUniversity of Virginia logoUniversity of VirginiaUniversity of SussexObservatoire de ParisUniversidade Federal do Rio de JaneiroBrandeis UniversityNational Center for Supercomputing ApplicationsUniversidade de São PauloUniversity of NottinghamThe Johns Hopkins UniversityUniversity of California, Santa Cruz logoUniversity of California, Santa CruzLudwig-Maximilians-UniversitätIndian Institute of Technology IndoreCIEMATINAF – Osservatorio Astronomico di RomaInstitut de Física d’Altes Energies (IFAE)Australian Astronomical OpticsKavli Institute for Particle Astrophysics and CosmologyUniversity Observatory MunichLaboratório Interinstitucional de e-Astronomia - LIneALas Campanas ObservatoryCNRS, UMR 7095, Institut d’Astrophysique de ParisSorbonne Université, Institut Lagrange de PariseScience Institute, University of WashingtonExcellence Cluster ‘Origins’Max Planck-Institute for Extraterrestrial PhysicsIFPU Institute for fundamental physics of the UniverseINAF ` Osservatorio Astronomico di Trieste
Clusters of galaxies are sensitive to the most nonlinear peaks in the cosmic density field. The weak gravitational lensing of background galaxies by clusters can allow us to infer their masses. However, galaxies associated with the local environment of the cluster can also be intrinsically aligned due to the local tidal gradient, contaminating any cosmology derived from the lensing signal. We measure this intrinsic alignment in Dark Energy Survey (DES) Year 1 redMaPPer clusters. We find evidence of a non-zero mean radial alignment of galaxies within clusters between redshift 0.1-0.7. We find a significant systematic in the measured ellipticities of cluster satellite galaxies that we attribute to the central galaxy flux and other intracluster light. We attempt to correct this signal, and fit a simple model for intrinsic alignment amplitude (AIAA_{\textrm{IA}}) to the measurement, finding AIA=0.15±0.04A_{\textrm{IA}}=0.15\pm 0.04, when excluding data near the edge of the cluster. We find a significantly stronger alignment of the central galaxy with the cluster dark matter halo at low redshift and with higher richness and central galaxy absolute magnitude (proxies for cluster mass). This is an important demonstration of the ability of large photometric data sets like DES to provide direct constraints on the intrinsic alignment of galaxies within clusters. These measurements can inform improvements to small-scale modeling and simulation of the intrinsic alignment of galaxies to help improve the separation of the intrinsic alignment signal in weak lensing studies.
Narrow-line Seyfert 1 (NLS1) galaxies are a class of active galactic nuclei (AGN) that, in some cases, can harbor powerful relativistic jets. One of them, PKS 2004-447, shows gamma-ray emission, and underwent its first recorded multifrequency flare in 2019. However, past studies revealed that in radio this source can be classified as a compact steep-spectrum source (CSS), suggesting that, unlike other gamma-ray sources, the relativistic jets of PKS 2004-447 have a large inclination with respect to the line of sight. We present here a set of spectroscopic observations of this object, aimed at carefully measuring its black hole mass and Eddington ratio, determining the properties of its emission lines, and characterizing its long term variability. We find that the black hole mass is (1.5±0.2)×107(1.5\pm0.2)\times10^7 M_\odot, and the Eddington ratio is 0.08. Both values are within the typical range of NLS1s. The spectra also suggest that the 2019 flare was caused mainly by the relativistic jet, while the accretion disk played a minor role during the event. In conclusion, we confirm that PKS 2004-447 is one of the rare examples of gamma-ray emitting CSS/NLS1s hybrid, and that these two classes of objects are likely connected in the framework of AGN evolution.
We present the design for the first narrowband filter NB964 for the Dark Energy Camera (DECam), which is operated on the 4m Blanco Telescope at the Cerro Tololo Inter-American Observatory. The NB964 filter profile is essentially defined by maximizing the power of searching for Lyman alpha emitting galaxies (LAEs) in the epoch of reionization, with the consideration of the night sky background in the near-infrared and the DECam quantum efficiency. The NB964 filter was manufactured by Materion in 2015. It has a central wavelength of 964.2 nm and a full width at half maximum (FWHM) of 9.2 nm. An NB964 survey named LAGER (Lyman Alpha Galaxies in the Epoch of Reionization) has been ongoing since December 2015. Here we report results of lab tests, on-site tests and observations with the NB964 filter. The excellent performances of this filter ensure that the LAGER project is able to detect LAEs at z~7 with a high efficiency.
We present the first installment of a massive spectroscopic survey of Galactic O stars, based on new, high signal-to-noise ratio, R~2500 digital observations from both hemispheres selected from the Galactic O-Star Catalog of Maíz Apellániz et al. (2004) and Sota et al. (2008). The spectral classification system is rediscussed and a new atlas is presented, which supersedes previous versions. Extensive sequences of exceptional objects are given, including types Ofc, ON/OC, Onfp, Of?p, Oe, and double-lined spectroscopic binaries. The remaining normal spectra bring this first sample to 184 stars, which is close to complete to B=8 and north of delta = -20 and includes all of the northern objects in Maíz Apellániz et al. (2004) that are still classified as O stars. The systematic and random accuracies of these classifications are substantially higher than previously attainable, because of the quality, quantity, and homogeneity of the data and analysis procedures. These results will enhance subsequent investigations in Galactic astronomy and stellar astrophysics. In the future we will publish the rest of the survey, beginning with a second paper that will include most of the southern stars in Maíz Apellániz et al. (2004).
ASPIRE (A SPectroscopic survey of bIased halos in the Reionization Era) is a quasar legacy survey primarily using \textit{JWST} to target a sample of 25 z&gt;6 quasars with NIRCam slitless spectroscopy and imaging. The first study in this series found evidence of a strong overdensity of galaxies around J0305-3150, a luminous quasar at z=6.61z=6.61, within a single NIRCam pointing obtained in JWST Cycle 1. Here, we present the first results of a JWST Cycle 2 mosaic that covers 35 arcmin2^2 with NIRCam imaging/WFSS of the same field to investigate the spatial extent of the putative protocluster. The F356W grism data targets [OIII]+Hβ\beta at 5.3105.310 cMpc.
The nuclear transient eRASSt J012026.5-292727 (J012026 hereafter) was discovered in the second SRG/eROSITA all-sky survey (eRASS2). The source appeared more than one order of magnitude brighter than the eRASS1 upper limits (peak eRASS2 0.2-2.3 keV flux of 1.14 x 10^-12 erg cm^-2 s^-1), and with a soft X-ray spectrum (photon index Gamma = 4.3). Over the following months, the X-ray flux started decaying, with significant flaring activity on both hour- and year-timescales. By inspecting the multiwavelength light curves of time-domain wide-field facilities, we detected a strong mid-infrared flare, evolving over 2 years, and a weaker optical counterpart. Follow-up optical spectroscopy revealed transient features, including redshifted Balmer lines (FWHM ~1500 km/s), strong Fe II emission, He II and Bowen lines, and high-ionization iron coronal lines. One spectrum showed a triple-peaked H-beta line, consistent with emission from a face-on elliptical disk. The spectroscopic features and the slow evolution of the event place J012026 within the classifications of Bowen fluorescence flares (BFFs) and extreme coronal line emitters (ECLEs). BFFs have been associated with rejuvenated accreting SMBHs, although the mechanism triggering the onset of the new accretion flow is still unclear, while ECLEs have been linked to the disruption of stars in gas-rich environments. The association of J012026 to both classes, combined with the multi-wavelength information, suggests that BFFs could be, at least in some cases, due to tidal disruption events (TDEs). The observed X-ray variability, uncommon in standard TDEs, adds complexity to these families of nuclear transients. These results highlight the diverse phenomenology of nuclear accretion events and demonstrate the value of systematic X-ray surveys, such as eROSITA and Einstein Probe, for uncovering such transients and characterizing their physical origin.
We present the nebular phase spectroscopic and photometric observations of the nearby hydrogen-rich core-collapse supernova (CC-SN) 2023ixf, obtained through our JWST programs. These observations, combined with ground-based optical and near-infrared spectra, cover +252.67 - 719.96 d, creating a comprehensive, panchromatic time-series dataset spanning 0.32 - 30μ\mum. In this second paper of the series, we focus on identifying key spectral emission features and tracking their evolution through the nebular phase. The JWST data reveal hydrogen emission from the Balmer to Humphreys series, as well as prominent forbidden lines from Ne, Ar, Fe, Co, and Ni. NIRSpec observations display strong emission from the first overtone and fundamental bands of carbon monoxide, which weaken with time as the ejecta cools and dust emission dominates. The spectral energy distribution shows a clear infrared excess emerging by +252.67 d peaking around 10.0μ\mum, with a secondary bump at 18.0μ\mum developing by +719.96 d. We suggest that this evolution could arises from multiple warm dust components. In upcoming papers in this series, we will present detailed modeling of the molecular and dust properties. Overall, this dataset significantly advances our understanding of the mid-infrared properties of CC-SNe, providing an unprecedented view of their late-time line, molecule, and dust emission.
We describe the design and performance of the near-infrared (1.51--1.70 micron), fiber-fed, multi-object (300 fibers), high resolution (R = lambda/delta lambda ~ 22,500) spectrograph built for the Apache Point Observatory Galactic Evolution Experiment (APOGEE). APOGEE is a survey of ~ 10^5 red giant stars that systematically sampled all Milky Way populations (bulge, disk, and halo) to study the Galaxy's chemical and kinematical history. It was part of the Sloan Digital Sky Survey III (SDSS-III) from 2011 -- 2014 using the 2.5 m Sloan Foundation Telescope at Apache Point Observatory, New Mexico. The APOGEE-2 survey is now using the spectrograph as part of SDSS-IV, as well as a second spectrograph, a close copy of the first, operating at the 2.5 m du Pont Telescope at Las Campanas Observatory in Chile. Although several fiber-fed, multi-object, high resolution spectrographs have been built for visual wavelength spectroscopy, the APOGEE spectrograph is one of the first such instruments built for observations in the near-infrared. The instrument's successful development was enabled by several key innovations, including a "gang connector" to allow simultaneous connections of 300 fibers; hermetically sealed feedthroughs to allow fibers to pass through the cryostat wall continuously; the first cryogenically deployed mosaic volume phase holographic grating; and a large refractive camera that includes mono-crystalline silicon and fused silica elements with diameters as large as ~ 400 mm. This paper contains a comprehensive description of all aspects of the instrument including the fiber system, optics and opto-mechanics, detector arrays, mechanics and cryogenics, instrument control, calibration system, optical performance and stability, lessons learned, and design changes for the second instrument.
We present JWST spectral and photometric observations of the Type IIP supernova (SN) 2022acko at ~50 days past explosion. These data are the first JWST spectral observations of a core-collapse SN. We identify ~30 different H I features, other features associated with products produced from the CNO cycle, and s-process elements such as Sc II and Ba II. By combining the JWST spectra with ground-based optical and NIR spectra, we construct a full Spectral Energy Distribution from 0.4 to 25 microns and find that the JWST spectra are fully consistent with the simultaneous JWST photometry. The data lack signatures of CO formation and we estimate a limit on the CO mass of < 10^{-8} solar mass. We demonstrate how the CO fundamental band limits can be used to probe underlying physics during stellar evolution, explosion, and the environment. The observations indicate little mixing between the H envelope and C/O core in the ejecta and show no evidence of dust. The data presented here set a critical baseline for future JWST observations, where possible molecular and dust formation may be seen.
JWST observations of polycyclic aromatic hydrocarbon (PAH) emission provide some of the deepest and highest resolution views of the cold interstellar medium (ISM) in nearby galaxies. If PAHs are well mixed with the atomic and molecular gas and illuminated by the average diffuse interstellar radiation field, PAH emission may provide an approximately linear, high resolution, high sensitivity tracer of diffuse gas surface density. We present a pilot study that explores using PAH emission in this way based on MIRI observations of IC 5332, NGC 628, NGC 1365, and NGC 7496 from the PHANGS-JWST Treasury. Using scaling relationships calibrated in Leroy et al. (2022), scaled F1130W provides 10--40 pc resolution and 3σ\sigma sensitivity of Σgas2\Sigma_{\rm gas} \sim 2 M_\odot pc2^{-2}. We characterize the surface densities of structures seen at &lt; 7 M_\odot pc2^{-2} in our targets, where we expect the gas to be HI-dominated. We highlight the existence of filaments, inter-arm emission, and holes in the diffuse ISM at these low surface densities. Below 10\sim 10 M_\odot pc2^{-2} for NGC 628, NGC 1365, and NGC 7496 the gas distribution shows a ``Swiss cheese''-like topology due to holes and bubbles pervading the relatively smooth distribution of diffuse ISM. Comparing to recent galaxy simulations, we observe similar topology for the low surface density gas, though with notable variations between simulations with different setups and resolution. Such a comparison of high resolution, low surface density gas with simulations is not possible with existing atomic and molecular gas maps, highlighting the unique power of JWST maps of PAH emission.
After the All-Sky Automated Survey for SuperNovae (ASAS-SN) discovered a significant brightening of the inner region of NGC 2617, we began a ~70 day photometric and spectroscopic monitoring campaign from the X-ray through near-infrared (NIR) wavelengths. We report that NGC 2617 went through a dramatic outburst, during which its X-ray flux increased by over an order of magnitude followed by an increase of its optical/ultraviolet (UV) continuum flux by almost an order of magnitude. NGC 2617, classified as a Seyfert 1.8 galaxy in 2003, is now a Seyfert 1 due to the appearance of broad optical emission lines and a continuum blue bump. Such "changing look Active Galactic Nuclei (AGN)" are rare and provide us with important insights about AGN physics. Based on the Hbeta line width and the radius-luminosity relation, we estimate the mass of central black hole to be (4 +/- 1) x 10^7 M_sun. When we cross-correlate the light curves, we find that the disk emission lags the X-rays, with the lag becoming longer as we move from the UV (2-3 days) to the NIR (6-9 days). Also, the NIR is more heavily temporally smoothed than the UV. This can largely be explained by a simple model of a thermally emitting thin disk around a black hole of the estimated mass that is illuminated by the observed, variable X-ray fluxes.
We present the results of a proof-of-concept experiment which demonstrates that deep learning can successfully be used for production-scale classification of compact star clusters detected in HST UV-optical imaging of nearby spiral galaxies (D < 20 Mpc) in the PHANGS-HST survey. Given the relatively small nature of existing, human-labelled star cluster samples, we transfer the knowledge of state-of-the-art neural network models for real-object recognition to classify star clusters candidates into four morphological classes. We perform a series of experiments to determine the dependence of classification performance on: neural network architecture (ResNet18 and VGG19-BN); training data sets curated by either a single expert or three astronomers; and the size of the images used for training. We find that the overall classification accuracies are not significantly affected by these choices. The networks are used to classify star cluster candidates in the PHANGS-HST galaxy NGC 1559, which was not included in the training samples. The resulting prediction accuracies are 70%, 40%, 40-50%, 50-70% for class 1, 2, 3 star clusters, and class 4 non-clusters respectively. This performance is competitive with consistency achieved in previously published human and automated quantitative classification of star cluster candidate samples (70-80%, 40-50%, 40-50%, and 60-70%). The methods introduced herein lay the foundations to automate classification for star clusters at scale, and exhibit the need to prepare a standardized dataset of human-labelled star cluster classifications, agreed upon by a full range of experts in the field, to further improve the performance of the networks introduced in this study.
There are no more papers matching your filters at the moment.