alphaXiv

Explore

State of the Art

Sign In

Labs

Feedback

Browser Extension

We're hiring
PaperBlogResources

Bio-xLSTM: Generative modeling, representation and in-context learning of biological and chemical sequences

BibTex
Copy
@misc{seidl2024bioxlstmgenerativemodeling,
      title={Bio-xLSTM: Generative modeling, representation and in-context learning of biological and chemical sequences}, 
      author={Philipp Seidl and Günter Klambauer and Johannes Brandstetter and Sepp Hochreiter and Andreas Mayr and Niklas Schmidinger and Lisa Schneckenreiter and Johannes Schimunek and Pieter-Jan Hoedt and Sohvi Luukkonen},
      year={2024},
      eprint={2411.04165},
      archivePrefix={arXiv},
      primaryClass={q-bio.BM},
      url={https://arxiv.org/abs/2411.04165}, 
}
Transform this paper into an audio lecture
Get an engaging lecture and Q&A format to quickly understand the paper in minutes, perfect for learning on the go.
Audio lecture
Q&A format