alphaXiv

Explore

State of the Art

Sign In

Labs

Feedback

Browser Extension

We're hiring
PaperBlogResources

RETENTION: Resource-Efficient Tree-Based Ensemble Model Acceleration with Content-Addressable Memory

BibTex
Copy
@misc{chang2025retentionresourceefficienttreebased,
      title={RETENTION: Resource-Efficient Tree-Based Ensemble Model Acceleration with Content-Addressable Memory},
      author={Yuan-Hao Chang and Tei-Wei Kuo and Jalil Boukhobza and Yi-Chun Liao and Chieh-Lin Tsai and Camélia Slimani},
      year={2025},
      eprint={2506.05994},
      archivePrefix={arXiv},
      primaryClass={cs.LG},
      url={https://arxiv.org/abs/2506.05994},
}
GitHub
RETENTION
0
HTTPS
https://github.com/datou0718/RETENTION
SSH
git@github.com:datou0718/RETENTION.git
CLI
gh repo clone datou0718/RETENTION
Transform this paper into an audio lecture
Get an engaging lecture and Q&A format to quickly understand the paper in minutes, perfect for learning on the go.
Audio lecture
Q&A format