alphaXiv

Explore

State of the Art

Sign In

Labs

Feedback

Browser Extension

We're hiring
PaperBlogResources

Benchmarking a Tunable Quantum Neural Network on Trapped-Ion and Superconducting Hardware

BibTex
Copy
@misc{galitski2025benchmarkingtunablequantum,
      title={Benchmarking a Tunable Quantum Neural Network on Trapped-Ion and Superconducting Hardware},
      author={Victor Galitski and Richard Barney and Xingxin Liu and Norbert M. Linke and Alaina M. Green and Djamil Lakhdar-Hamina and Sarah H. Miller},
      year={2025},
      eprint={2507.21222},
      archivePrefix={arXiv},
      primaryClass={quant-ph},
      url={https://arxiv.org/abs/2507.21222},
}
Transform this paper into an audio lecture
Get an engaging lecture and Q&A format to quickly understand the paper in minutes, perfect for learning on the go.
Audio lecture
Q&A format