Centre for Quantum Materials and Technology
We introduce a nonequilibrium phenomenon reminiscent of Anderson's orthogonality catastrophe (OC) that arises in the transient dynamics following an interaction quench between a quantum system and a localized defect. Even if the system comprises only a single particle, the overlap between the asymptotic and initial superposition states vanishes with a power law scaling with the number of energy eigenstates entering the initial state and with an exponent that depends on the interaction strength. The presence of quantum coherence in the initial state is reflected onto the discrete counterpart of an infinite discontinuity in the system spectral function, a hallmark of Anderson's OC, as well as in the quasiprobability distribution of work due to the quench transformation. The positivity loss of the work distribution is directly linked with a reduction of the minimal time imposed by quantum mechanics for the state to orthogonalize. We propose an experimental test of coherence-enhanced orthogonalization dynamics based on Ramsey interferometry of a trapped cold-atom system.
We investigate the non-equilibrium quantum dynamics and thermodynamics of free fermions suddenly coupled to a localized defect in a one-dimensional harmonic trap. This setup realizes a quantum quench transformation that gives rise to the orthogonalization of the system's wave-function as an effect of the localized perturbation. Using the Loschmidt echo and the Kirkwood-Dirac quasiprobability (KDQ) distribution of the work done by the defect, we quantify the extent and rate of the orthogonalization dynamics. In particular, we show that initializing the system in a coherent superpositions of energy eigenstates leads to non-classical features, such as Wigner function's negativity and non-positivity of the work KDQ distribution. Starting from simple single-particle superpositions and then progressing with coherent and cat states of few-body fermionic systems, we uncover how quantum coherence and few-body correlations shape the out-of-equilibrium response due to the presence of the defect.
There are no more papers matching your filters at the moment.