Ecole Pratique des Hautes Etudes
Kolmogorov-Chaitin complexity has long been believed to be impossible to approximate when it comes to short sequences (e.g. of length 5-50). However, with the newly developed \emph{coding theorem method} the complexity of strings of length 2-11 can now be numerically estimated. We present the theoretical basis of algorithmic complexity for short strings (ACSS) and describe an R-package providing functions based on ACSS that will cover psychologists' needs and improve upon previous methods in three ways: (1) ACSS is now available not only for binary strings, but for strings based on up to 9 different symbols, (2) ACSS no longer requires time-consuming computing, and (3) a new approach based on ACSS gives access to an estimation of the complexity of strings of any length. Finally, three illustrative examples show how these tools can be applied to psychology.
We propose a measure based upon the fundamental theoretical concept in algorithmic information theory that provides a natural approach to the problem of evaluating nn-dimensional complexity by using an nn-dimensional deterministic Turing machine. The technique is interesting because it provides a natural algorithmic process for symmetry breaking generating complex nn-dimensional structures from perfectly symmetric and fully deterministic computational rules producing a distribution of patterns as described by algorithmic probability. Algorithmic probability also elegantly connects the frequency of occurrence of a pattern with its algorithmic complexity, hence effectively providing estimations to the complexity of the generated patterns. Experiments to validate estimations of algorithmic complexity based on these concepts are presented, showing that the measure is stable in the face of some changes in computational formalism and that results are in agreement with the results obtained using lossless compression algorithms when both methods overlap in their range of applicability. We then use the output frequency of the set of 2-dimensional Turing machines to classify the algorithmic complexity of the space-time evolutions of Elementary Cellular Automata.
There are no more papers matching your filters at the moment.