Instituto de Astronomía y Física del Espacio
Within the framework of F(R)F(R) theories of gravity with (2+1)-dimensions and constant scalar curvature RR, we construct a family of thin-shell wormholes with circular symmetry and we analyze the stability of the static configurations under radial perturbations. We show an example of asymptotically anti-de Sitter thin-shell wormholes with charge, finding that stable configurations with normal matter are possible for a suitable range of the parameters.
The morphological classification of galaxies is considered a relevant issue and can be approached from different points of view. The increasing growth in the size and accuracy of astronomical data sets brings with it the need for the use of automatic methods to perform these classifications. The aim of this work is to propose and evaluate a method for automatic unsupervised classification of kinematic morphologies of galaxies that yields a meaningful clustering and captures the variations of the fundamental properties of galaxies. We obtain kinematic maps for a sample of 2064 galaxies from the largest simulation of the EAGLE project that mimics integral field spectroscopy (IFS) images. These maps are the input of a dimensionality reduction algorithm followed by a clustering algorithm. We analyse the variation of physical and observational parameters among the clusters obtained from the application of this procedure to different inputs. The inputs studied in this paper are (a) line-of-sight velocity maps for the whole sample of galaxies observed at fixed inclinations, (b) line-of-sight velocity, dispersion, and flux maps together for the whole sample of galaxies observed at fixed inclinations, (c) line-of-sight velocity, dispersion, and flux maps together for two separate subsamples of edge-on galaxies with similar amount of rotation, and (d) line-of-sight velocity, dispersion, and flux maps together for galaxies from different observation angles mixed. The application of the method to solely line-of-sight velocity maps achieves a clear division between slow rotators (SRs) and fast rotators (FRs) and can differentiate rotation orientation. By adding the dispersion and flux information at the input, low rotation edge-on galaxies are separated according to their shapes. Abridged.
Despite investments in multiple space and ground-based solar observatories by the global community, the Sun's polar regions remain unchartered territory - the last great frontier for solar observations. Breaching this frontier is fundamental to understanding the solar cycle - the ultimate driver of short-to-long term solar activity that encompasses space weather and space climate. Magnetohydrodynamic dynamo models and empirically observed relationships have established that the polar field is the primary determinant of the future solar cycle amplitude. Models of solar surface evolution of tilted active regions indicate that the mid to high latitude surges of magnetic flux govern dynamics leading to the reversal and build-up of polar fields. Our theoretical understanding and numerical models of this high latitude magnetic field dynamics and plasma flows - that are a critical component of the sunspot cycle - lack precise observational constraints. This limitation compromises our ability to observe the enigmatic kilo Gauss polar flux patches and constrain the polar field distribution at high latitudes. The lack of these observations handicap our understanding of how high latitude magnetic fields power polar jets, plumes, and the fast solar wind that extend to the boundaries of the heliosphere and modulate solar open flux and cosmic ray flux within the solar system. Accurate observation of the Sun's polar regions, therefore, is the single most outstanding challenge that confronts Heliophysics. This paper argues the scientific case for novel out of ecliptic observations of the Sun's polar regions, in conjunction with existing, or future multi-vantage point heliospheric observatories. Such a mission concept can revolutionize the field of Heliophysics like no other mission concept has - with relevance that transcends spatial regimes from the solar interior to the heliosphere.
The solar wind is a structured and complex system, in which the fields vary strongly over a wide range of spatial and temporal scales. As an example, the turbulent activity in the wind affects the evolution in the heliosphere of the integral turbulent scale or correlation length [{\lambda}], usually associated with the breakpoint in the turbulent-energy spectrum that separates the inertial range from the injection range. This large variability of the fields demands a statistical description of the solar wind. In this work, we study the probability distribution function (PDF) of the magnetic autocorrelation lengths observed in the solar wind at different distances from the Sun. We use observations from Helios, ACE, and Ulysses spacecraft. We distinguish between the usual solar wind and one of its transient components (Interplanetary Coronal Mass Ejections, ICMEs), and study also solar wind samples with low and high proton beta [\beta_p ]. We find that in the last 3 regimes the PDF of {\lambda} is a log-normal function, consistent with the multiplicative and non-linear processes that take place in the solar wind, the initial {\lambda} (before the Alfvénic point) being larger in ICMEs.
We present a sub-grid model for star formation in galaxy simulations, incorporating molecular hydrogen (H2\mathrm{H}_2) production via dust grain condensation and its destruction through star formation and photodissociation. Implemented within the magnetohydrodynamical code AREPO, our model tracks the non-equilibrium mass fractions of molecular, ionised, and atomic hydrogen, as well as a stellar component, by solving a system of differential equations governing mass exchange between these phases. Star formation is treated with a variable rate dependent on the local H2\mathrm{H}_2 abundance, which itself varies in a complex way with key quantities such as gas density and metallicity. Testing the model in a cosmological simulation of a Milky Way-mass galaxy, we obtain a well-defined spiral structure at z=0z = 0, including a gas disc twice the size of the stellar one, alongside a realistic star formation history. Our results show a broad range of star formation efficiencies per free-fall time, from as low as 0.001%0.001\% at high redshift to values between 0.1%0.1\% and 10%10\% for ages 34Gyr\gtrsim 3-4 \, \mathrm{Gyr}. These findings align well with observational estimates and simulations of a turbulent interstellar medium. Notably, our model reproduces a star formation rate versus molecular hydrogen surface densities relation akin to the molecular Kennicutt-Schmidt law. Furthermore, we find that the star formation efficiency varies with density and metallicity, providing an alternative to fixed-efficiency assumptions and enabling comparisons with more detailed star formation models. Comparing different star formation prescriptions, we find that in models that link star formation to H2\mathrm{H}_2, star formation onset is  ⁣500Myr\sim \! 500 \, \mathrm{Myr} later than those relying solely on total or cold gas density.
Supernova remnants are believed to be the main sites where Galactic cosmic rays originate. This scenario, however, fails to explain some of the features observed in the cosmic-ray spectrum. Microquasars have been proposed as additional candidates, because their non-thermal emission indicates the existence of efficient particle acceleration mechanisms in their jets. A promising scenario envisages the production of relativistic neutrons in the jets, that decay outside the system injecting relativistic protons to the surroundings. The first investigations of this scenario suggest that microquasars might be fairly alternative cosmic-ray sources. We aim at assessing the role played by the degree of collimation of the jet on the cosmic-ray energetics in the neutron-carrier scenario, as well as the properties of the emission region. Our goals are to explain the Galactic component of the observed proton cosmic-ray spectrum at energies higher than 10\sim 10 GeV and to relate the mentioned jet properties with the power and spectral index of the produced cosmic rays. We find that collimated jets, with compact acceleration regions close to the jet base, are very efficient sources that could deliver a fraction of up to 0.01\sim 0.01 of their relativistic proton luminosity into cosmic rays. Collimation is the most significant feature regarding efficiency; a well collimated jet might be 4\sim 4 orders of magnitude more efficient than a poorly collimated one. The main feature of the presented mechanism is the production of a spectrum with a steeper spectral index (2.3\sim 2.3 at energies up to 10\sim 10 TeV) than in the supernova scenario, and closer to what is observed. The predictions of our model may be used to infer the total contribution of the population of Galactic microquasars to the cosmic ray population, and therefore to quantitatively assess their significance as cosmic-ray sources.
Some verses of Dante Alighieri suggest his astrological sign and his probable date of birth. This leads us to reflect on the different methods, increasingly divergent, with which sciences as opposed to beliefs approach reality.
In this work, we present results on the assembly of stellar discs belonging to Milky Way-type galaxies in the Auriga simulated sample. We study the net accretion of gas onto the disc region as a function of time and radius to assess the feasibility of the so-called inside-out formation of galaxy discs. We found that most of the galaxies in our sample exhibit an inside-out disc growth, with younger stellar populations preferentially formed in the outer regions as accreted material turns into starts. This produces stable discs as long as late-time accretion is free from significant external perturbations.
Since the time of ancient civilizations, cosmology had a privileged place within the various artistic and literary manifestations. The Divine Comedy by Dante Alighieri, one of the masterpieces in literature and thought of the Western World, is organized on the image of the cosmos of the XIII century, which is analyzed in this article.
A Planck scale inflationary era -- in a quantum gravity theory predicting discreteness of quantum geometry at the fundamental scale -- produces the scale invariant spectrum of inhomogeneities with very small tensor-to-scalar ratio of perturbations and a hot big bang leading to a natural dark matter genesis scenario. Here we evoke the possibility that some of the major puzzles in cosmology would have an explanation rooted in quantum gravity.
The origin and nature of the ultrahigh energy cosmic rays remains a mystery. However, considerable progress has been achieved in past years due to observations performed by the Pierre Auger Observatory and Telescope Array. Above 101810^{18} eV the observed energy spectrum presents two features: a hardening of the slope at 1018.6\sim 10^{18.6} eV, which is known as the ankle, and a suppression at 1019.6\sim 10^{19.6} eV. The composition inferred from the experimental data, interpreted by using the current high energy hadronic interaction models, seems to be light below the ankle, showing a trend to heavier nuclei for increasing values of the primary energy. Also, the anisotropy information is consistent with an extragalactic origin of this light component that would dominate the spectrum below the ankle. Therefore, the models that explain the ankle as the transition from the galactic and extragalactic components are disfavored by present data. Recently, it has been proposed that this light component originates from the photodisintegration of more energetic and heavier nuclei in the source environment. The formation of the ankle can also be explained by this mechanism. In this work we study in detail this general scenario but in the context of the central region of active galaxies. In this case, the cosmic rays are accelerated near the supermassive black hole present in the central region of these types of galaxies, and the photodisintegration of heavy nuclei takes place in the radiation field that surrounds the supermassive black hole.
We present an observational program we started in 1999, to systematically obtain mid-resolution spectra of late-type stars, to study in particular chromospheric activity. In particular, we found cyclic activity in four dM stars, including Prox-Cen. We directly derived the conversion factor that translates the known S index to flux in the Ca II cores, and extend its calibration to a wider spectral range. We investigated the relation between the activity measurements in the calcium and hydrogen lines, and found that the usual correlation observed is the product of the dependence of each flux on stellar color, and it is not always preserved when simultaneous observations of a particular star are considered. We also used our observations to model the chromospheres of stars of different spectral types and activity levels, and found that the integrated chromospheric radiative losses, normalized to the surface luminosity, show a unique trend for G and K dwarfs when plotted against the S index.
11 Oct 2004
Direct numerical simulations of turbulent Hall dynamos are presented. The evolution of an initially weak and small scale magnetic field in a system maintained in a stationary turbulent regime by a stirring force at a macroscopic scale is studied to explore the conditions for exponential growth of the magnetic energy. Scaling of the dynamo efficiency with the Reynolds numbers is studied, and the resulting total energy spectra are found to be compatible with a Kolmogorov type law. A faster growth of large scale magnetic fields is observed at intermediate intensities of the Hall effect.
Projective invariance is a symmetry of the Palatini version of General Relativity which is not present in the metric formulation. The fact that the Riemann tensor changes nontrivially under projective transformations implies that, unlike in the usual metric approach, in the Palatini formulation this tensor is subject to a gauge freedom, which allows some ambiguities even in its scalar contractions. In this sense, we show that for the Schwarzschild solution there exists a projective gauge in which the (affine) Kretschmann scalar, KRαβμνRαβμνK\equiv {R^\alpha}_{\beta\mu\nu}{R_\alpha}^{\beta\mu\nu}, can be set to vanish everywhere. This puts forward that the divergence of curvature scalars may, in some cases, be avoided by a gauge transformation of the connection.
Newman-Janis algorithm for Kerr-Newman geometry is reanalyzed in the light of Cartan calculus.
The middle-aged supernova remnant (SNR) W44 has recently attracted attention because of its relevance regarding the origin of Galactic cosmic-rays. The gamma-ray missions AGILE and Fermi have established, for the first time for a SNR, the spectral continuum below 200 MeV which can be attributed to neutral pion emission. Confirming the hadronic origin of the gamma-ray emission near 100 MeV is then of the greatest importance. Our paper is focused on a global re-assessment of all available data and models of particle acceleration in W44, with the goal of determining on a firm ground the hadronic and leptonic contributions to the overall spectrum. We also present new gamma-ray and CO NANTEN2 data on W44, and compare them with recently published AGILE and Fermi data. Our analysis strengthens previous studies and observations of the W44 complex environment and provides new information for a more detailed modeling. In particular, we determine that the average gas density of the regions emitting 100 MeV - 10 GeV gamma-rays is relatively high (n= 250 - 300 cm^-3). The hadronic interpretation of the gamma-ray spectrum of W44 is viable, and supported by strong evidence. It implies a relatively large value for the average magnetic field (B > 10^2 microG) in the SNR surroundings, sign of field amplification by shock-driven turbulence. Our new analysis establishes that the spectral index of the proton energy distribution function is p1 = 2.2 +/- 0.1 at low energies and p2 = 3.2 +/- 0.1 at high energies. We critically discuss hadronic versus leptonic-only models of emission taking into account simultaneously radio and gamma-ray data. We find that the leptonic models are disfavored by the combination of radio and gamma-ray data. Having determined the hadronic nature of the gamma-ray emission on firm ground, a number of theoretical challenges remains to be addressed.
Solar observations from millimeter to ultraviolet wavelengths show that there is a temperature minimum between photosphere and chromosphere. Analysis based on semi-empirical models locate this point at about 500 km over the photosphere. The consistency of these models has been tested by means of millimeter to infrared observations. In the present work, we show that variations of the theoretical radial temperature profile near the temperature minimum impacts the brightness temperature at centimeter, submillimeter, and infrared wavelengths, but the millimeter wavelength emission remains unchanged. We found a region between 500 and 1000 km over the photosphere that remains hidden to observations at the frequencies under study in this work.
Current observational results show that both late-and-early-type galaxies follow tight mass-size planes, on which physical properties such as age, velocity dispersion and metallicities correlate with the scatter on the plane. We study the mass-size plane of galaxies in cosmological hydrodynamical simulations, as a function of velocity dispersion, age, chemical abundances, ellipticity and spin parameters with the aim at assessing to what extent the current cosmological paradigm can reproduce these observations and provide a physical interpretation of them. We select a sample of well-resolved galaxies from the (100 Mpc)^3 simulation of the EAGLE Project. This sample is composed by 508 spheroid-dominated galaxies and 1213 disc-dominated galaxies. The distributions of velocity dispersion, age, metallicity indicators and gradients and spin parameters across the mass-size plane are analysed. Furthermore, we study the relation between shape and kinematic parameters. The results are compared with observations. The mass-weighted ages of the EAGLE galaxies are found to vary along lines of constant velocity dispersion on the mass-size plane, except for galaxies with velocity dispersion larger than aprox 150 km s^(-1) . Negative age gradients tend to be found in extended disc galaxies in agreement with observations. However, the age distributions of early-type galaxies show a larger fraction with inverted radial profiles. The distribution of metallicity gradients does not show any clear dependence on this plane. Galaxies with similar spin parameters ({\lambda}) display larger sizes as their dynamical masses increase. Stellar-weighted ages are found to be good proxies for {\lambda} in galaxies with low ellipticity ({\epsilon}). Abridged
Inflation plays a central role in our current understanding of the universe. According to the standard viewpoint, the homogeneous and isotropic mode of the inflaton field drove an early phase of nearly exponential expansion of the universe, while the quantum fluctuations (uncertainties) of the other modes gave rise to the seeds of cosmic structure. However, if we accept that the accelerated expansion led the universe into an essentially homogeneous and isotropic space-time, with the state of all the matter fields in their vacuum (except for the zero mode of the inflaton field), we can not escape the conclusion that the state of the universe as a whole would remain always homogeneous and isotropic. It was recently proposed in [A. Perez, H. Sahlmann and D. Sudarsky, "On the quantum origin of the seeds of cosmic structure," Class. Quant. Grav. 23, 2317-2354 (2006)] that a collapse (representing physics beyond the established paradigm, and presumably associated with a quantum-gravity effect a la Penrose) of the state function of the inflaton field might be the missing element, and thus would be responsible for the emergence of the primordial inhomogeneities. Here we will discuss a formalism that relies strongly on quantum field theory on curved space-times, and within which we can implement a detailed description of such a process. The picture that emerges clarifies many aspects of the problem, and is conceptually quite transparent. Nonetheless, we will find that the results lead us to argue that the resulting picture is not fully compatible with a purely geometric description of space-time.
We investigate higher than the first order gravitational perturbations in the Newman-Penrose formalism. Equations for the Weyl scalar ψ4,\psi_4, representing outgoing gravitational radiation, can be uncoupled into a single wave equation to any perturbative order. For second order perturbations about a Kerr black hole, we prove the existence of a first and second order gauge (coordinates) and tetrad invariant waveform, ψI\psi_I, by explicit construction. This waveform is formed by the second order piece of ψ4\psi_4 plus a term, quadratic in first order perturbations, chosen to make ψI\psi_I totally invariant and to have the appropriate behavior in an asymptotically flat gauge. ψI\psi_I fulfills a single wave equation of the form TψI=S,{\cal T}\psi_I=S, where ${\cal T}isthesamewaveoperatorasforfirstorderperturbationsand is the same wave operator as for first order perturbations and S$ is a source term build up out of (known to this level) first order perturbations. We discuss the issues of imposition of initial data to this equation, computation of the energy and momentum radiated and wave extraction for direct comparison with full numerical approaches to solve Einstein equations.
There are no more papers matching your filters at the moment.