Instituto de Investigación en Informática LIDI - Universidad Nacional de La Plata
·
Sign language translation (SLT) is an active field of study that encompasses human-computer interaction, computer vision, natural language processing and machine learning. Progress on this field could lead to higher levels of integration of deaf people. This paper presents, to the best of our knowledge, the first continuous Argentinian Sign Language (LSA) dataset. It contains 14,880 sentence level videos of LSA extracted from the CN Sordos YouTube channel with labels and keypoints annotations for each signer. We also present a method for inferring the active signer, a detailed analysis of the characteristics of the dataset, a visualization tool to explore the dataset and a neural SLT model to serve as baseline for future experiments.
Sign Language Recognition (SLR) models face significant performance limitations due to insufficient training data availability. In this article, we address the challenge of limited data in SLR by introducing a novel and lightweight sign generation model based on CMLPe. This model, coupled with a synthetic data pretraining approach, consistently improves recognition accuracy, establishing new state-of-the-art results for the LSFB and DiSPLaY datasets using our Mamba-SL and Transformer-SL classifiers. Our findings reveal that synthetic data pretraining outperforms traditional augmentation methods in some cases and yields complementary benefits when implemented alongside them. Our approach democratizes sign generation and synthetic data pretraining for SLR by providing computationally efficient methods that achieve significant performance improvements across diverse datasets.
There are no more papers matching your filters at the moment.