Istituto di Fotonica e Nanotecnologie CNR
The functionalization of quantum devices to increase their performance and extend their fields of application is an extremely active research area. One of the most promising approaches is to replace aluminum with more performant materials. Within this context, van der Waals (vdW) materials are ideal candidates since they would allow to embed their unique properties into qubits. However, the realization of qubits based on vdW materials other than graphene is yet to be achieved. In this work we present a weakly anharmonic NbSe2 qubit. Our device exhibits a relaxation time T1 = 6.5 +\- 0.4 us which is roughly 2 orders of magnitude larger of other vdW qubits in addition to robustness to photon noise up to 5-10 thermal photons. Our work serves as a demonstrator of the advantage of integration of vdW materials into quantum technologies as well as serving as the first step toward the application of quantum non demolition photon detection protocols in the challenging field of dark matter search.
Quantum Key Distribution (QKD) allows distant parties to exchange cryptographic keys with unconditional security by encoding information on the degrees of freedom of photons. Polarization encoding has been extensively used in QKD implementations along free-space, optical fiber and satellite-based links. However, the polarization encoders used in such implementations are unstable, expensive, complex and can even exhibit side-channels that undermine the security of the implemented protocol. Here we propose a self-compensating polarization encoder based on a Lithium Niobate phase modulator inside a Sagnac interferometer and implement it using only standard telecommunication commercial off-the-shelves components (COTS). Our polarization encoder combines a simple design and high stability reaching an intrinsic quantum bit error rate as low as 0.2%. Since realization is possible from the 800 nm to the 1550 nm band by using COTS, our polarization modulator is a promising solution for free-space, fiber and satellite-based QKD.
Researchers present the first experimental demonstration of an electromagnetic black hole bomb instability using a rotating metallic cylinder within a resonator. The experiment successfully showed electromagnetic wave amplification, spontaneous wave generation from noise, and self-limiting behavior where the waves extract energy from the cylinder's rotation, all consistent with theoretical predictions for superradiant scattering.
Exciton polaritons based on atomically thin semiconductors are essential building blocks of quantum optoelectronic devices. Their properties are governed by an ultrafast and oscillatory energy transfer between their excitonic and photonic constituents, resulting in the formation of polaritonic quasiparticles with pronounced nonlinearities induced by the excitonic component. In metallic nanoresonators, dissipation phenomena limit the polariton lifetime to a few ten femtoseconds, so short that the role of these polaritons for the nonlinearities of such hybrids is yet unexplored. Here, we use ultrafast two-dimensional electronic spectroscopy (2DES) to uncover coherent polariton dynamics in a hybrid monolayer (1L) WS2/plasmonic nanostructure. With respect to an uncoupled WS2 flake, we observe an over 20-fold, polarization-dependent enhancement of the optical nonlinearity and a rapid evolution of the 2DES spectra within ~70 fs. We relate these dynamics to a transition from coherent polaritons to incoherent excitations, unravel the microscopic optical nonlinearities, and show the potential of coherent polaritons for ultrafast all-optical switching.
25 Jan 2022
We report on the dependence of the frequency-to-intensity noise conversion in the locking of an ultrafast laser against a high-finesse optical resonator from the Carrier Envelope Offset (CEO) frequency. By a proper combination of the cavity finesse and laser CEO frequency it is possible to optimize the signal-to-noise ratio of the laser intensity trapped into the optical resonator. The theoretical description of the problem together with the numerical simulations and experimental results are presented with the aim of a strong suppression of the intensity fluctuations of the trapped laser field.
The next generation of experiments for the measurement of the Cosmic Microwave Background (CMB) requires more and more the use of advanced materials, with specific physical and structural properties. An example is the material used for receiver's cryostat windows and internal lenses. The large throughput of current CMB experiments requires a large diameter (of the order of 0.5m) of these parts, resulting in heavy structural and optical requirements on the material to be used. Ultra High Molecular Weight (UHMW) polyethylene (PE) features high resistance to traction and good transmissivity in the frequency range of interest. In this paper, we discuss the possibility of using UHMW PE for windows and lenses in experiments working at millimeter wavelengths, by measuring its optical properties: emissivity, transmission and refraction index. Our measurements show that the material is well suited to this purpose.
Multiplexing is a strategy to augment the transmission capacity of a communication system. It consists of combining multiple signals over the same data channel and it has been very successful in classical communications. However, the use of enhanced channels has only reached limited practicality in quantum communications (QC) as it requires the complex manipulation of quantum systems of higher dimensions. Considerable effort is being made towards QC using high-dimensional quantum systems encoded into the transverse momentum of single photons but, so far, no approach has been proven to be fully compatible with the existing telecommunication infrastructure. Here, we overcome such a technological challenge and demonstrate a stable and secure high-dimensional decoy-state quantum key distribution session over a 0.3 km long multicore optical fiber. The high-dimensional quantum states are defined in terms of the multiple core modes available for the photon transmission over the fiber, and the decoy-state analysis demonstrates that our technique enables a positive secret key generation rate up to 25 km of fiber propagation. Finally, we show how our results build up towards a high-dimensional quantum network composed of free-space and fiber based links
We propose a method to detect lower bounds to quantum capacities of a noisy quantum communication channel by means of few measurements. The method is easily implementable and does not require any knowledge about the channel. We test its efficiency by studying its performance for most well known single qubit noisy channels and for the generalised Pauli channel in arbitrary finite dimension.
Galaxy clusters and surrounding medium, can be studied using X-ray bremsstrahlung emission and Sunyaev Zel'dovich (SZ) effect. Both astrophysical probes, sample the same environment with different parameters dependance. The SZ effect is relatively more sensitive in low density environments and thus is useful to study the filamentary structures of the cosmic web. In addition, observations of the matter distribution require high angular resolution in order to be able to map the matter distribution within and around galaxy clusters. MISTRAL is a camera working at 90GHz which, once coupled to the Sardinia Radio Telescope, can reach 1212'' angular resolution over 44' field of view (f.o.v.). The forecasted sensitivity is NEFD1015mJysNEFD \simeq 10-15mJy \sqrt{s} and the mapping speed is MS=3802/mJy2/hMS= 380'^{2}/mJy^{2}/h. MISTRAL was recently installed at the focus of the SRT and soon will take its first photons.
Free-electron lasers (FELs) are the world's most brilliant light sources with rapidly evolving technological capabilities in terms of ultrabright and ultrashort pulses over a large range of accessible photon energies. Their revolutionary and innovative developments have opened new fields of science regarding nonlinear light-matter interaction, the investigation of ultrafast processes from specific observer sites, and approaches to imaging matter with atomic resolution. A core aspect of FEL science is the study of isolated and prototypical systems in the gas phase with the possibility of addressing well-defined electronic transitions or particular atomic sites in molecules. Notably for polarization-controlled short-wavelength FELs, the gas phase offers new avenues for investigations of nonlinear and ultrafast phenomena in spin orientated systems, for decoding the function of the chiral building blocks of life as well as steering reactions and particle emission dynamics in otherwise inaccessible ways. This roadmap comprises descriptions of technological capabilities of facilities worldwide, innovative diagnostics and instrumentation, as well as recent scientific highlights, novel methodology and mathematical modeling. The experimental and theoretical landscape of using polarization controllable FELs for dichroic light-matter interaction in the gas phase will be discussed and comprehensively outlined to stimulate and strengthen global collaborative efforts of all disciplines.
Optical diffraction tomography (ODT) is a powerful non-invasive 3D imaging technique, but its combination with broadband light sources is difficult. In this study, we introduce ultrabroadband ODT, covering over 150 nm of visible spectral bandwidth with a lateral spatial resolution of 150 nm. Our work addresses a critical experimental gap by enabling the measurement of broadband refractive index changes in 3D samples, a crucial information that is difficult to assess with existing methodologies. We present broadband, spectrally resolved ODT images of HeLa cells, obtained via pulse-shaping based Fourier transform spectroscopy. The spectral observations enabled by ultrabroadband ODT, combined with material-dependent refractive index responses, allow for precise three-dimensional identification of the nanoparticles within cellular structures. Our work represents a crucial step towards time and spectrally-resolved tomography of complex 3D structures with implications for life and materials science applications.
In this paper we report the use of superconducting transmon qubit in a 3D cavity for quantum machine learning and photon counting applications. We first describe the realization and characterization of a transmon qubit coupled to a 3D resonator, providing a detailed description of the simulation framework and of the experimental measurement of important parameters, like the dispersive shift and the qubit anharmonicity. We then report on a Quantum Machine Learning application implemented on the single-qubit device to fit the u-quark parton distribution function of the proton. In the final section of the manuscript we present a new microwave photon detection scheme based on two qubits coupled to the same 3D resonator. This could in principle decrease the dark count rate, favouring applications like axion dark matter searches.
Noise at the quantum limit over a broad bandwidth is a fundamental requirement for future cryogenic experiments for neutrino mass measurements, dark matter searches and Cosmic Microwave Background (CMB) measurements as well as for fast high-fidelity read-out of superconducting qubits. In the last years, Josephson Parametric Amplifiers (JPA) have demonstrated noise levels close to the quantum limit, but due to their narrow bandwidth, only few detectors or qubits per line can be read out in parallel. An alternative and innovative solution is based on superconducting parametric amplification exploiting the travelling-wave concept. Within the DARTWARS (Detector Array Readout with Travelling Wave AmplifieRS) project, we develop Kinetic Inductance Travelling-Wave Parametric Amplifiers (KI-TWPAs) for low temperature detectors and qubit read-out. KI-TWPAs are typically operated in a threewave mixing (3WM) mode and are characterised by a high gain, a high saturation power, a large amplification bandwidth and nearly quantum limited noise performance. The goal of the DARTWARS project is to optimise the KI-TWPA design, explore new materials, and investigate alternative fabrication processes in order to enhance the overall performance of the amplifier. In this contribution we present the advancements made by the DARTWARS collaboration to produce a working prototype of a KI-TWPA, from the fabrication to the characterisation.
In the context of quantum thermodynamics, quantum batteries have emerged as promising devices for energy storage and manipulation. Over the past decade, substantial progress has been made in understanding the fundamental properties of quantum batteries, with several experimental implementations showing great promise. This Perspective provides an overview of the solid-state materials platforms that could lead to fully operational quantum batteries. After briefly introducing the basic features of quantum batteries, we discuss organic microcavities, where superextensive charging has already been demonstrated experimentally. We then explore other materials, including inorganic nanostructures (such as quantum wells and dots), perovskite systems, and (normal and high-temperature) superconductors. Key achievements in these areas, relevant to the experimental realization of quantum batteries, are highlighted. We also address challenges and future research directions. Despite their enormous potential for energy storage devices, research into advanced materials for quantum batteries is still in its infancy. This paper aims to stimulate interdisciplinarity and convergence among different materials science research communities to accelerate the development of new materials and device architectures for quantum batteries.
We investigated the giant resonance in Xenon by high-order harmonic generation spectroscopy driven by a two-color field. The addition of a non-perturbative second harmonic component parallel to the driving field breaks the symmetry between neighboring sub-cycles resulting in the appearance of spectral caustics at two distinct cut-off energies. By controlling the phase delay between the two color components it is possible to tailor the harmonic emission in order to amplify and isolate the spectral feature of interest. In this paper we demonstrate how this control scheme can be used to investigate the role of electron correlations that give birth to the giant resonance in Xenon. The collective excitations of the giant dipole resonance in Xenon combined with the spectral manipulation associated with the two color driving field allow to see features that are normally not accessible and to obtain a quantitative good agreement between the experimental results and the theoretical predictions.
Isotopic substitution in molecular systems can affect fundamental molecular properties including the energy position and spacing of electronic, vibrational and rotational levels, thus modifying the dynamics associated to their coherent superposition. In extreme ultraviolet spectroscopy, the photoelectron leaving the molecule after the absorption of a single photon can trigger an ultrafast nuclear motion in the cation, which can lead, eventually, to molecular fragmentation. This dynamics depends on the mass of the constituents of the cation, thus showing, in general, a significant isotopic dependence. In time-resolved attosecond photoelectron interferometry, the absorption of the extreme ultraviolet photon is accompanied by the exchange of an additional quantum of energy (typically in the infrared spectral range) with the photoelectron-photoion system, offering the opportunity to investigate in time the influence of isotopic substitution on the characteristics of the photoionisation dynamics. Here we show that attosecond photoelectron interferometry is sensitive to isotopic substitution by investigating the two-color photoionisation spectra measured in a mixture of methane (CH4_4) and deuteromethane (CD4_4). The isotopic dependence manifests itself in the modification of the amplitude and contrast of the oscillations of the photoelectron peaks generated in the two-color field with the two isotopologues. The observed effects are interpreted considering the differences in the time evolution of the nuclear autocorrelation functions in the two molecules.
We propose a superconducting phase qubit on the basis of the radio-frequency SQUID with the screening parameter value $\beta_L = (2\pi/\Phi_0)LI_c \approx 1,biasedbyahalffluxquantum, biased by a half flux quantum \Phi_e=\Phi_0/2$. Significant anharmonicity (>30> 30%) can be achieved in this system due to the interplay of the cosine Josephson potential and the parabolic magnetic-energy potential that ultimately leads to the quartic polynomial shape of the well. The two lowest eigenstates in this global minimum perfectly suit for the qubit which is insensitive to the charge variable, biased in the optimal point and allows an efficient dispersive readout. Moreover, the transition frequency in this qubit can be tuned within an appreciable range allowing variable qubit-qubit coupling.
Next-generation experiments searching for neutrinoless double-beta decay must be sensitive to a Majorana neutrino mass as low as 10 meV. CUORE, an array of 988 TeO2_2 bolometers being commissioned at Laboratori Nazionali del Gran Sasso in Italy, features an expected sensitivity of 50-130 meV at 90% C.L, that can be improved by removing the background from α\alpha radioactivity. This is possible if, in coincidence with the heat release in a bolometer, the Cherenkov light emitted by the β\beta signal is detected. The amount of light detected is so far limited to only 100 eV, requiring low-noise cryogenic light detectors. The CALDER project (Cryogenic wide-Area Light Detectors with Excellent Resolution) aims at developing a small prototype experiment consisting of TeO2_2 bolometers coupled to new light detectors based on kinetic inductance detectors. The R&D is focused on the light detectors that could be implemented in a next-generation neutrinoless double-beta decay experiment.
We report on the performance of lumped--elements Kinetic Inductance Detector (KID) arrays for mm and sub--mm wavelengths, operated at 0.3K during the stratospheric flight of the OLIMPO payload, at an altitude of 37.8 km. We find that the detectors can be tuned in-flight, and their performance is robust against radiative background changes due to varying telescope elevation. We also find that the noise equivalent power of the detectors in flight is significantly reduced with respect to the one measured in the laboratory, and close to photon-noise limited performance. The effect of primary cosmic rays crossing the detector is found to be consistent with the expected ionization energy loss with phonon-mediated energy transfer from the ionization sites to the resonators. In the OLIMPO detector arrays, at float, cosmic ray events affect less than 4% of the detector samplings for all the pixels of all the arrays, and less than 1% of the samplings for most of the pixels. These results are also representative of what one can expect from primary cosmic rays in a satellite mission with similar KIDs and instrument environment.
The Italian institute for nuclear physics (INFN) has financed the SIMP project (2019-2021) in order to strengthen its skills and technologies in the field of meV detectors with the ultimate aim of developing a single microwave photon detector. This goal will be pursued by improving the sensitivity and the dark count rate of two types of photodetectors: current biased Josephson Junction (JJ) for the frequency range 10-50 GHz and Transition Edge Sensor (TES) for the frequency range 30-100 GHz. Preliminary results on materials and devices characterization are presented.
There are no more papers matching your filters at the moment.