Las Cumbres Observatory
We report initial observations aimed at the characterization of a third interstellar object. This object, 3I/ATLAS or C/2025 N1 (ATLAS), was discovered on 2025 July 1 UT and has an orbital eccentricity of e6.1e\sim6.1, perihelion of q1.36q\sim 1.36 au, inclination of 175\sim175^\circ, and hyperbolic velocity of V58V_\infty\sim 58 km s1^{-1}. We report deep stacked images obtained using the Canada-France-Hawaii Telescope and the Very Large Telescope that resolve a compact coma. Using images obtained from several smaller ground-based telescopes, we find minimal light curve variation for the object over a 4\sim4 day time span. The visible/near-infrared spectral slope of the object is 17.1±\pm0.2 %/100 nm, comparable to other interstellar objects and primitive solar system small bodies (comets and D-type asteroids). 3I/ATLAS will be observable through early September 2025, then unobservable by Earth-based observatories near perihelion due to low solar elongation. It will be observable again from the ground in late November 2025. Although this limitation unfortunately prohibits detailed Earth-based observations at perihelion when the activity of 3I/ATLAS is likely to peak, spacecraft at Mars could be used to make valuable observations at this time.
3I/ATLAS was discovered on UT 2025 July 1 and joins a limited but growing population of detected 102103\sim10^2-10^3 m scale interstellar objects. In this paper we report photometric observations of 3I/ATLAS from the nights of UT 2025 July 3, UT 2025 July 9, and UT 2025 July 10 obtained with the Southern Astrophysical Research Telescope (SOAR). The photometric observations are taken with the Goodman High Throughput Spectrograph (HTS) in the rr'-band. These data provide 28 photometric data points to the rapidly growing composite light curve of 3I/ATLAS. They reveal that the object did not exhibit obvious long-term variability in its brightness when these observations were taken. These observations appear to have captured two moderate and independent brightening events on UT 2025 July 9, and UT 2025 July 10. However, we perform a series of stellar contamination, stacking, and aperture experiments that demonstrate that the increases in brightness by 0.8\sim0.8 magnitudes appear to be a result of poor seeing and stellar contamination by close-proximity field stars. We report the mean brightnesses of 3I/ATLAS on each night of magnitude 18.14, 17.55, and 17.54 for UT 2025 July 3, 9, and 10, respectively. Moreover, the presence of cometary activity in extant images obtained contemporaneously with these data precludes them from revealing insights into the rotation of the nucleus. We conclude that the activity of 3I/ATLAS on UT 2025 July 9 and UT July 10 was consistent with the near-discovery activity levels, with no obvious outburst activity.
As part of the Galactic Bulge Time Domain Survey (GBTDS), the Nancy Grace Roman Galactic Exoplanet Survey (RGES) will use microlensing to discover cold outer planets and free-floating planets unbound to stars. NASA has established several science requirements for the GBTDS to ensure RGES success. A key advantage of RGES is Roman's high angular resolution, which will allow detection of flux from many host stars. One requirement specifies that Roman must measure the masses and distances of 40% of detected planet hosts with 20% precision or better. To test this, we simulated microlensing events toward the GBTDS fields and used Fisher matrix analysis to estimate light curve parameter uncertainties. Combining these with Roman imaging observables (lens flux, relative lens-source proper motion), we estimated the achievable precision of lens mass and distance measurements. Using pyLIMASS, a publicly available code for estimating lens properties, we applied this analysis to 3,000 simulated events. Assuming the Cassan et al. (2012) exoplanet mass function, we find that >40% of host stars meet the required 20% precision threshold, confirming that the GBTDS can satisfy the mission requirement. We validated our approach by comparing our inferred lens masses and distances to empirical measurements from detailed image-constrained light curve modeling of historical microlensing events with Hubble and Keck follow-up imaging. Our results agree within roughly 1 sigma, demonstrating that both approaches yield consistent and reliable mass and distance estimates, and confirming the robustness of our simulations for Roman-era microlensing science.
We present optical + near-infrared (NIR) + mid-infrared (MIR) observations of the normal Type Ia supernovae (SN Ia) 2022aaiq and 2024gy in the nebular phase, continuously spanning 0.35-28 microns. Medium-resolution JWST spectroscopy reveals novel narrow (v_{\mathrm{FWHM}}<1500 km s1^{-1}) [Ni II] 1.94 and 6.64 micron cores in both events. The MIR [Ni II] 6.64 micron line exhibits a distinct narrow core atop a broader base, indicating a central enhancement of stable Ni. This structure points to high central densities consistent with a near-Chandrasekhar-mass (MChM_{Ch}) progenitor or a high-metallicity sub-MChM_{Ch} progenitor. From detailed line-profile inversions of SN 2024gy, we derive emissivity profiles for stable iron-group elements (IGEs), radioactive material, and intermediate-mass elements (IMEs), revealing spatially distinct ejecta zones. The [Ni III] 7.35 micron line shows a shallow-to-steep slope transition -- a "broken-slope" morphology -- that matches predictions for delayed detonation explosions with separated deflagration and detonation ashes. We also reanalyze and compare to archival JWST spectra of SN 2021aefx and the subluminous SN 2022xkq. We estimate a stable 58^{58}Ni mass of 0.1\sim0.1 M_\odot for SN 2024gy, consistent with delayed detonation models, and 0.01\sim0.01 M_\odot for SN 2022xkq, favoring sub-MChM_{Ch} scenarios. These results demonstrate that resolved line profiles, now accessible with JWST, provide powerful diagnostics of explosion geometry, central density, and progenitor mass in SN Ia.
We present the most comprehensive catalog to date of Type I Superluminous Supernovae (SLSNe), a class of stripped envelope supernovae (SNe) characterized by exceptionally high luminosities. We have compiled a sample of 262 SLSNe reported through 2022 December 31. We verified the spectroscopic classification of each SLSN and collated an exhaustive data set of UV, optical and IR photometry from both publicly available data and our own FLEET observational follow-up program, totaling over 30,000 photometric detections. Using these data we derive observational parameters such as the peak absolute magnitudes, rise and decline timescales, as well as bolometric luminosities, temperature and photospheric radius evolution for all SLSNe. Additionally, we model all light curves using a hybrid model that includes contributions from both a magnetar central engine and the radioactive decay of 56^{56}Ni. We explore correlations among various physical and observational parameters, and recover the previously found relation between ejecta mass and magnetar spin, as well as the overall progenitor pre-explosion mass distribution with a peak at $\approx 6.5M M_\odot$. We find no significant redshift dependence for any parameter, and no evidence for distinct sub-types of SLSNe. We find that < 3\% of SLSNe are best fit with a significant contribution from radioactive decay $\gtrsim 50$\%, representing a set of relatively dim and slowly declining SNe. We provide several analytical tools designed to simulate typical SLSN light curves across a broad range of wavelengths and phases, enabling accurate K-corrections, bolometric scaling calculations, and inclusion of SLSNe in survey simulations or future comparison works. The complete catalog, including all of the photometry, models, and derived parameters, is made available as an open-source resource on GitHub.
Though type-Ia supernovae (SNe Ia) are found in all types of galaxies, recent local Hubble constant measurements have disfavored using SNe Ia in early-type or quiescent galaxies, aiming instead for better consistency with SNe Ia in star-forming, late-type host galaxies calibrated by Cepheid distances. Here we investigate the feasibility of a parallel distance ladder using SNe Ia exclusively in quiescent, massive (logM/M10\log M_*/M_{\odot} \geq 10) host galaxies, calibrated by tip of the red giant branch (TRGB) distances. We present TRGB measurements to four galaxies: three measured from the Hubble Space Telescope with the ACS F814W filter, and one measured from the JWST NIRCam F090W filter. Combined with literature measurements, we define a TRGB calibrator sample of five high-mass, early-type galaxies that hosted well-measured SNe Ia: NGC 1316 (SN 2006dd), NGC 1380 (SN 1992A), NGC 1404 (SN 2007on, SN 2011iv), NGC 4457 (SN 2020nvb), and NGC 4636 (SN 2020ue). We jointly standardize these calibrators with a fiducial sample of 124 Hubble-flow SNe Ia from the Zwicky Transient Facility that are matched in host-galaxy and light-curve properties. Our results with this homogenized subsample show a Hubble residual scatter of under 0.11 mag, lower than usually observed in cosmological samples of the full SN~Ia distribution. We obtain a measurement of the Hubble constant, H0=75.3±2.9H_0 = 75.3 \pm 2.9 km s1^{-1} Mpc1^{-1}, including statistical and estimated systematic uncertainties, and discuss the potential to further improve the precision of this approach. As calibrator and supernova samples grow, we advocate that future cosmological applications of SNe Ia use subsamples matched in host-galaxy and supernova properties across redshift.
The n=1n=1 photon ring is a full image of the astrophysical source around a black hole, produced by photons that execute n1n\approx1 half-orbit around the event horizon on their way to an observer. The Black Hole Explorer (BHEX) is a proposed extension of the Event Horizon Telescope to space that will target the n=1n=1 photon rings of the supermassive black holes M87{}^\ast and Sgr\,A{}^\ast. In this paper, we introduce a new interferometric observable that will be directly measurable on BHEX baselines and which admits a clear image-domain interpretation in terms of the photon ring brightness profile. Across a wide range of semi-analytic equatorial emission models, we find that the azimuthal intensity profile of the ring can change depending on the astrophysics of the source, but its width wbw_b is weakly sensitive to these details -- much like the ring shape, which has previously been identified as a probe of the spacetime geometry. Our survey suggests that interferometric measurements of the photon ring diameter and wbw_b can place constraints (to  ⁣20%\lesssim\!20\%) on the spin and inclination of a black hole with a known mass-to-distance ratio, such as Sgr\,A{}^\ast. State-of-the-art numerical simulations support this finding, paving the way to a precise photon-ring-based spin measurement for Sgr\,A{}^\ast with BHEX.
As NASA's New Horizons spacecraft exits the Solar System bound for interstellar space, it has traveled so far that the nearest stars have shifted markedly from their positions seen from Earth. We demonstrated this by imaging the Proxima Centauri and Wolf 359 fields from Earth and New Horizons on 2020 April 23, when the spacecraft was 47.1 au distant. The observed parallaxes for Proxima Centauri and Wolf 359 are 32.432.4'' and 15.7,15.7'', respectively. These measurements are not of research grade, but directly seeing large stellar parallaxes between two widely separated simultaneous observers is vividly educational. Using the New Horizons positions of the two stars alone, referenced to the three-dimensional model of the solar neighborhood constructed from Gaia DR3 astrometry, further provides the spacecraft spatial position relative to nearby stars with 0.44 au accuracy. The range to New Horizons from the Solar System barycenter is recovered to 0.27 au accuracy, and its angular direction to 0.40.4^\circ accuracy, when compared to the precise values from NASA Deep Space Network tracking. This is the first time optical stellar astrometry has been used to determine the three-dimensional location of a spacecraft with respect to nearby stars, and the first time any method of interstellar navigation has been demonstrated for a spacecraft on an interstellar trajectory. We conclude that the best astrometric approach to navigating spacecraft on their departures to interstellar space is to use a single pair of the closest stars as references, rather than a large sample of more distant stars.
We present a new photometric pipeline for the detection of pre-supernova (pre-SN) emission in the Young Supernova Experiment (YSE) sky survey. The method described is applied to SN 2020tlf, a type II SN (SN II) with precursor emission in the last ~100 days before first light. We re-analyze the YSE griz-band light curves of SN 2020tlf and provide revised pre-explosion photometry that includes a robust list of confident detection and limiting magnitudes. Compared to the results of Jacobson-Galan et al. 2022a, this new analysis yields fewer total r/i/z-band pre-SN detections at phases > -100 days. Furthermore, we discourage the use of the blackbody modeling of the pre-explosion spectral energy distribution, the pre-SN bolometric light curve and the blackbody model parameters presented in Jacobson-Galan et al. 2022a. Nevertheless, binned photometry of SN 2020tlf confirms a consistent progenitor luminosity of ~1040^{40} erg s1^{-1} before explosion.
The Roman Galactic Plane Survey (RGPS) is a 700-hour program approved for early definition as a community-designed General Astrophysics Survey. It was selected following a proposal call for science programs that would benefit from an early community-based definition (Sanderson et al 2024). The community was invited to submit white papers and science pitches with a deadline of May 20, 2024; the Roman Galactic Plane Survey Definition Committee (RGPS-DC) first met on Sep 11, 2024. Based on the input provided, the RGPS-DC recommends a survey consisting of three elements: (1) a wide-field science element (691 sq deg, 541 hrs) covering the Galactic plane, Galactic latitude |b|<2 deg and Galactic longitude l=+50.1 deg to -79 deg (281 deg), in four filters (F129, F159, F184, and F213) with higher latitude extensions for the bulge, the Serpens South/W40 star formation region, and Carina, (2) a time-domain science element (19 sq deg , 130 hrs) of six fields, including the full Nuclear Stellar Disk (NSD) and Central Molecular Zone (CMZ), with coverage in seven filters and repeat observations in one or more filters with cadences from 11 minutes to weeks, and (3) a deep-field/spectroscopic science element (4 sq deg , 30 hrs) consisting of fifteen Roman pointings (with a wide range of extinction, diffuse emission, stellar density and population) using longer exposure times in seven filters in addition to grism and prism observations. This document summarizes the science that can be done with this survey, the process of survey definition, and details on all of the program elements.
Identifying black holes is essential for comprehending the development of stars and uncovering novel principles of physics. Gravitational microlensing provides an exceptional opportunity to examine an undetectable population of black holes in the Milky Way. In particular, long-lasting events are likely to be associated with massive lenses, including black holes. We present an analysis of the Gaia18ajz microlensing event, reported by the Gaia Science Alerts system, which has exhibited a long timescale and features indicative of the annual microlensing parallax effect. Our objective is to estimate the parameters of the lens based on the best-fitting model. We utilized photometric data obtained from the Gaia satellite and terrestrial observatories to investigate a variety of microlensing models and calculate the most probable mass and distance to the lens, taking into consideration a Galactic model as a prior. Subsequently, weapplied a mass-brightness relation to evaluate the likelihood that the lens is a main sequence star. We also describe the DarkLensCode (DLC), an open-source routine which computes the distribution of probable lens mass, distance and luminosity employing the Galaxy priors on stellar density and velocity for microlensing events with detected microlensing parallax. We modelled Gaia18ajz event and found its two possible models with most likely Einstein timescale of 31630+36316^{+36}_{-30} days and 29922+25299^{+25}_{-22} days. Applying Galaxy priors for stellar density and motion, we calculated the most probable lens mass of 4.92.3+5.4M4.9^{+5.4}_{-2.3} M_\odot located at 1.140.57+0.75kpc1.14^{+0.75}_{-0.57}\,\text{kpc} or 11.14.7+10.3M11.1^{+10.3}_{-4.7} M_\odot located at 1.310.60+0.80kpc1.31^{+0.80}_{-0.60}\,\text{kpc}. Our analysis of the blended light suggests that the lens is likely a dark remnant of stellar evolution, rather than a main sequence star.
Hydrogen-rich supernovae (SNe) span a range of hydrogen envelope masses at core collapse, producing diverse light curves from extended plateaus in Type II SNe to double-peaked Type IIb SNe. Recent hydrodynamic modeling predicts a continuous sequence of light-curve morphologies as hydrogen is removed, with short plateau SNe (plateau durations ~50--70 days) emerging as a transitional class. However, the observational boundary between IIb and short-plateau remains poorly defined, and thus far unobserved. We report on extensive photometric and spectroscopic follow-up of SN 2023wdd and SN 2022acrv, candidate transitional events on the low-mass end of the short-plateau class. Both exhibit weak, double-peaked light curves which we interpret as exceptionally short plateaus (10--20 days), and hybrid spectral features: persistent Hα\alpha absorption with He I contamination, but without the helium dominance characteristic of IIb SNe. Using analytic shock-cooling models and numerical light curve fitting, we estimate hydrogen-rich envelope masses of ~0.6--0.8 MM_\odot -- significantly larger than canonical IIb values (0.1M\lesssim0.1\,M_\odot) but consistent with the 0.9M{\sim}0.9\,M_\odot threshold predicted for short-plateau behavior. Although the progenitor radii inferred from analytic and numerical methods differ by factors of 2--5, envelope mass estimates are consistent across approaches. Comparisons to well-studied IIb (SN 2016gkg, SN 2022hnt), short-plateau (SN 2023ufx, SN 2006ai, SN 2016egz, SN 2006Y), and II SNe (SN 2023ixf, SN 2013ej) suggest a monotonic relationship between hydrogen envelope mass and plateau length consistent with analytic and numerical expectations. These findings provide additional evidence for a continuous distribution of envelope stripping in hydrogen-rich core-collapse progenitors and place SN 2023wdd and SN 2022acrv along the IIb/short-plateau boundary.
Observing and characterizing young planetary systems can aid in unveiling the evolutionary mechanisms that sculpt the mature exoplanet population. As an all-sky survey, NASA's Transiting Exoplanet Survey Satellite (TESS) has expanded the known young planet population as it has observed young comoving stellar populations. This work presents the discovery of a multiplanet system orbiting the 61 Myr old G4V star TIC 434398831 (M = 0.99 Msun, R = 0.91 Rsun, Teff = 5638 K, Tmag = 11.31) located in the Theia 116 comoving population. We estimate the population's age based on rotation periods measured from the TESS light curves, isochrone fitting, and measurements of lithium equivalent widths in the spectra of Theia 116 members. The TESS FFI light curves reveal a mini-Neptune (Rb = 3.51 Rearth, Pb = 3.69 days) and super-Neptune (Rc = 5.63 Rearth, Pc = 6.21 days) with an orbital period ratio slightly larger than 5:3. Follow-up observations from CHEOPS and ground-based telescopes confirm the transits of TIC 434398831 b and c, and constrain their transit times. We explore the potential mass-loss histories of the two planets in order to probe possible initial conditions of the planets immediately after formation.
At 66 Mpc, AT2019qiz is the closest optical tidal disruption event (TDE) to date, with a luminosity intermediate between the bulk of the population and iPTF16fnl. Its proximity allowed a very early detection and triggering of multiwavelength and spectroscopic follow-up well before maximum light. The velocity dispersion of the host galaxy and fits to the TDE light curve indicate a black hole mass 106\approx 10^6 M_\odot, disrupting a star of 1\approx 1 M_\odot. Comprehensive UV, optical and X-ray data shows that the early optical emission is dominated by an outflow, with a luminosity evolution $L \propto t^2$, consistent with a photosphere expanding at constant velocity (2000\gtrsim 2000 km s1^{-1}), and a line-forming region producing initially blueshifted H and He II profiles with v=300010000v=3000-10000 km s1^{-1}. The fastest optical ejecta approach the velocity inferred from radio detections (modelled in a forthcoming companion paper from K.~D.~Alexander et al.), thus the same outflow may be responsible for both the fast optical rise and the radio emission -- the first time this connection has been observed in a TDE. The light curve rise begins 29±229 \pm 2 days before maximum light, peaking when the photosphere reaches the radius where optical photons can escape. The photosphere then undergoes a sudden transition, first cooling at constant radius then contracting at constant temperature. At the same time, the blueshifts disappear from the spectrum and Bowen fluorescence lines (N III) become prominent, implying a source of far-UV photons, while the X-ray light curve peaks at 1041\approx 10^{41} erg s1^{-1}. Assuming that these X-rays are from prompt accretion, the size and mass of the outflow are consistent with the reprocessing layer needed to explain the large optical to X-ray ratio in this and other optical TDEs, possibly favouring accretion-powered over collision-powered outflow models.
Blazars are often observed to flare across multiple wavelengths. Orphan flares from blazars have been only detected a few times, providing an opportunity to understand the structure of the jet in the accreting system. We report a remarkable orphan X-ray flare from a blazar candidate EP240709a, detected by Einstein Probe (EP) in July 2024. The multi-band spectral properties and variability support EP240709a as a high-energy peaked BL Lacertae-type object. The flux in 0.5-10 keV increases by at least 28 times to the value of low state in 2020, with non-detection of remarkable flaring in other bands during the same period. EP240709a exhibits the harder-when-brighter tendency in the X-ray band during the orphan flare, while its infrared-optical spectra are featureless. We employ one-zone and two-zone leptonic synchrotron self-Compton models to perform the spectral energy distribution fitting. Detecting this rare orphan flare shows the potential of EP in discovering peculiar activities from AGN in high-cadence X-ray sky surveys.
We report the discovery of a transiting brown dwarf orbiting a low-mass star, TOI-6508b. Today, only ~50 transiting brown dwarfs have been discovered. TOI-6508b was first detected with data from the Transiting Exoplanet Survey Satellite (TESS) in Sectors 10, 37, and 63. Ground-based follow-up photometric data were collected with the SPECULOOS-South and LCOGT-1.0m telescopes, and RV measurements were obtained with the Near InfraRed Planet Searcher (NIRPS) spectrograph. We find that TOI-6508b has a mass of Mp=72.5+7.6-5.1MJup and a radius of Rp=1.03+/-0.03RJup. Our modeling shows that the data are consistent with an eccentric orbit of 19day and an eccentricity of e=0.28+0.09-0.08. TOI-6508b has a mass ratio of M_BD/Ms=0.40, makes it the second highest mass ratio brown dwarf that transits a low-mass star. The host has a mass of Ms=0.174+/-0.004M_Sun, a radius of Rs=0.205+/-0.006R_Sun, an effective temperature of Teff=2930+/-70K, and a metallicity of [Fe/H]=-0.22+/-0.08. This makes TOI-6508b an interesting discovery that has come to light in a region still sparsely populated.
AT 2021loi is an optical-ultraviolet transient located at the center of its host galaxy. Its spectral features identify it as a member of the ``Bowen Fluorescence Flare'' (BFF) class. The first member of this class was considered to be related to a tidal disruption event, but enhanced accretion onto an already active supermassive black hole was suggested as an alternative explanation. AT 2021loi, having occurred in a previously-known unobscured AGN, strengthens the latter interpretation. Its light curve is similar to those of previous BFFs, showing a rebrightening approximately one year after the main peak (which was not explicitly identified, but might be the case, in all previous BFFs). An emission feature around 4680 A, seen in the pre-flare spectrum, strengthens by a factor of \sim2 around the optical peak of the flare, and is clearly seen as a double peaked feature then, suggesting a blend of NIII λ4640\lambda 4640 with HeII λ4686\lambda4686 as its origin. The appearance of OIII λ\lambda3133 and possible NIII λλ4097,4103\lambda\lambda4097,4103 (blended with Hδ\delta) during the flare further support a Bowen Fluorescence classification. Here, we present ZTF, ATLAS, Keck, Las Cumbres Observatory, NEOWISE-R, SwiftSwift, AMI and VLA observations of AT 2021loi, making it one of the best observed BFFs to date. AT 2021loi thus provides some clarity on the nature of BFFs but also further demonstrates the diversity of nuclear transients.
Long gamma-ray bursts (LGRBs), including their subclasses of low-luminosity GRBs (LL-GRBs) and X-ray flashes (XRFs) characterized by low spectral peak energies, are known to be associated with broad-lined Type Ic supernovae (SNe Ic-BL), which result from the core collapse of massive stars that lose their outer hydrogen and helium envelopes. However, the soft and weak end of the GRB/XRF population remains largely unexplored, due to the limited sensitivity to soft X-ray emission. Here we report the discovery of a fast X-ray transient, EP250108a, detected by the Einstein Probe (EP) in the soft X-ray band at redshift z=0.176z = 0.176, which was followed up by extensive multiband observations. EP250108a shares similar X-ray luminosity as XRF\,060218, the prototype of XRFs, but it extends GRBs/XRFs down to the unprecedentedly soft and weak regimes, with its Epeak1.8keVE_{\rm peak} \lesssim 1.8\,\mathrm{keV} and Eiso1049ergE_{\rm iso} \lesssim 10^{49}\, \mathrm{erg}, respectively. Meanwhile, EP250108a is found to be associated with SN\,2025kg, one of the most luminous and possibly magnetar-powered SNe Ic-BL detected so far. Modeling of the well-sampled optical light curves favors a mildly relativistic outflow as the origin of this event. This discovery demonstrates that EP, with its unique capability, is opening a new observational window into the diverse outcomes of death of massive stars.
There are no more papers matching your filters at the moment.