Mimic Robotics
MAPLE: Encoding Dexterous Robotic Manipulation Priors Learned From Egocentric Videos

The MAPLE framework from ETH Zurich, Mimic Robotics, and Microsoft Research develops a visual encoder that learns fine-grained dexterous manipulation priors, specifically hand-object contact points and 3D hand poses, directly from large-scale egocentric videos. This approach leads to a 31.9% mean success rate across diverse simulation tasks and superior real-world performance on a dexterous robotic hand, achieving 69% success on the Sponge task, by providing manipulation-aware visual features.

View blog
Resources
Latent Action Diffusion for Cross-Embodiment Manipulation
End-to-end learning is emerging as a powerful paradigm for robotic manipulation, but its effectiveness is limited by data scarcity and the heterogeneity of action spaces across robot embodiments. In particular, diverse action spaces across different end-effectors create barriers for cross-embodiment learning and skill transfer. We address this challenge through diffusion policies learned in a latent action space that unifies diverse end-effector actions. We first show that we can learn a semantically aligned latent action space for anthropomorphic robotic hands, a human hand, and a parallel jaw gripper using encoders trained with a contrastive loss. Second, we show that by using our proposed latent action space for co-training on manipulation data from different end-effectors, we can utilize a single policy for multi-robot control and obtain up to 25.3% improved manipulation success rates, indicating successful skill transfer despite a significant embodiment gap. Our approach using latent cross-embodiment policies presents a new method to unify different action spaces across embodiments, enabling efficient multi-robot control and data sharing across robot setups. This unified representation significantly reduces the need for extensive data collection for each new robot morphology, accelerates generalization across embodiments, and ultimately facilitates more scalable and efficient robotic learning.
View blog
Resources
mimic-one: a Scalable Model Recipe for General Purpose Robot Dexterity
We present a diffusion-based model recipe for real-world control of a highly dexterous humanoid robotic hand, designed for sample-efficient learning and smooth fine-motor action inference. Our system features a newly designed 16-DoF tendon-driven hand, equipped with wide angle wrist cameras and mounted on a Franka Emika Panda arm. We develop a versatile teleoperation pipeline and data collection protocol using both glove-based and VR interfaces, enabling high-quality data collection across diverse tasks such as pick and place, item sorting and assembly insertion. Leveraging high-frequency generative control, we train end-to-end policies from raw sensory inputs, enabling smooth, self-correcting motions in complex manipulation scenarios. Real-world evaluations demonstrate up to 93.3% out of distribution success rates, with up to a +33.3% performance boost due to emergent self-correcting behaviors, while also revealing scaling trends in policy performance. Our results advance the state-of-the-art in dexterous robotic manipulation through a fully integrated, practical approach to hardware, learning, and real-world deployment.
View blog
Resources
There are no more papers matching your filters at the moment.