Nanjing Vocational University of Industry Technology
The High Average Utility Itemset Mining (HAUIM) technique, a variation of High Utility Itemset Mining (HUIM), uses the average utility of the itemsets. Historically, most HAUIM algorithms were designed for static databases. However, practical applications like market basket analysis and business decision-making necessitate regular updates of the database with new transactions. As a result, researchers have developed incremental HAUIM (iHAUIM) algorithms to identify HAUIs in a dynamically updated database. Contrary to conventional methods that begin from scratch, the iHAUIM algorithm facilitates incremental changes and outputs, thereby reducing the cost of discovery. This paper provides a comprehensive review of the state-of-the-art iHAUIM algorithms, analyzing their unique characteristics and advantages. First, we explain the concept of iHAUIM, providing formulas and real-world examples for a more in-depth understanding. Subsequently, we categorize and discuss the key technologies used by varying types of iHAUIM algorithms, encompassing Apriori-based, Tree-based, and Utility-list-based techniques. Moreover, we conduct a critical analysis of each mining method's advantages and disadvantages. In conclusion, we explore potential future directions, research opportunities, and various extensions of the iHAUIM algorithm.
Saliency maps have proven to be a highly efficacious approach for explicating the decisions of Convolutional Neural Networks. However, extant methodologies predominantly rely on gradients, which constrain their ability to explicate complex models. Furthermore, such approaches are not fully adept at leveraging negative gradient information to improve interpretive veracity. In this study, we present a novel concept, termed positive and negative excitation, which enables the direct extraction of positive and negative excitation for each layer, thus enabling complete layer-by-layer information utilization sans gradients. To organize these excitations into final saliency maps, we introduce a double-chain backpropagation procedure. A comprehensive experimental evaluation, encompassing both binary classification and multi-classification tasks, was conducted to gauge the effectiveness of our proposed method. Encouragingly, the results evince that our approach offers a significant improvement over the state-of-the-art methods in terms of salient pixel removal, minor pixel removal, and inconspicuous adversarial perturbation generation guidance. Additionally, we verify the correlation between positive and negative excitations.
There are no more papers matching your filters at the moment.