Universidade Cidade de São Paulo
We present a multiphase, resolved study of the galactic wind extending from the nearby starburst galaxy NGC 4666. For this we use VLT/MUSE observations from the GECKOS program and HI data from the WALLABY survey. We identify both ionised and HI gas in a biconical structure extending to at least zz\sim8 kpc from the galaxy disk, with increasing velocity offsets above the midplane in both phases, consistent with a multiphase wind. The measured electron density, using [SII], differs significantly from standard expectations of galactic winds. We find electron density declines from the galaxy centre to 2\sim2 kpc, then rises again, remaining high (100300\sim100-300 cm3^{-3}) out to \sim5 kpc. We find that HI dominates the mass loading. The total HI mass outflow rate (above z >2z~>2 kpc) is between 513 M yr15-13~M_{\odot}~\rm yr^{-1}, accounting for uncertainties from disk-blurring and group interactions. The total ionised mass outflow rate (traced by Hα\alpha) is between 0.5 M yr10.5~M_{\odot}~\rm yr^{-1} and 5 M yr15~M_{\odot}~\rm yr^{-1}, depending on ne(z)n_e(z) assumptions. From ALMA/ACA observations, we place an upper-limit on CO flux in the outflow which correlates to 2.9 M yr1\lesssim2.9~M_{\odot}~\rm yr^{-1}. We also show that the entire outflow is not limited to the bicone, but a secondary starburst at the edge generates a more widespread outflow, which should be included in simulations. The cool gas in NGC 4666 wind has insufficient velocity to escape the halo of a galaxy of its mass, especially because most of the mass is present in the slower atomic phase. This strong biconical wind contributes to gas cycling around the galaxy.
Theoretical and observational studies have suggested that ram-pressure stripping by the intracluster medium can be enhanced during cluster interactions, boosting the formation of the "jellyfish" galaxies. In this work, we study the incidence of galaxies undergoing ram-pressure stripping in 52 clusters of different dynamical states. We use optical data from the WINGS/OmegaWINGS surveys and archival X-ray data to characterise the dynamical state of our cluster sample, applying eight different proxies. We then compute the number of ram-pressure stripping candidates relative to the infalling population of blue late-type galaxies within a fixed circular aperture in each cluster. We find no clear correlation between the fractions of ram-pressure stripping candidates and the different cluster dynamical state proxies considered. These fractions also show no apparent correlation with cluster mass. To construct a dynamical state classification closer to a merging "sequence", we perform a visual classification of the dynamical states of the clusters, combining information available in optical, X-ray, and radio wavelengths. We find a mild increase in the RPS fraction in interacting clusters with respect to all other classes (including post-mergers). This mild enhancement could hint at a short-lived enhanced ram-pressure stripping in ongoing cluster mergers. However, our results are not statistically significant due to the low galaxy numbers. We note this is the first homogeneous attempt to quantify the effect of cluster dynamical state on ram-pressure stripping using a large cluster sample, but even larger (especially wider) multi-wavelength surveys are needed to confirm the results.
Globular clusters (GCs) are fundamental for understanding the integrated light of old stellar populations and galaxy assembly processes. However, the role of hot, evolved stars, such as horizontal branch (HB), extreme HB, and blue stragglers, remains poorly constrained. These stars are often underrepresented or entirely excluded from stellar population models, despite their dominant contribution to the ultraviolet (UV) flux. Their presence can bias age estimates by mimicking the spectral signatures of younger populations. We examined the impact of evolved hot stars on the models using two well-studied Galactic GCs with high-quality Hubble Space Telescope photometry and integrated spectra from the International Ultraviolet Explorer and the Blanco Telescope. NGC 2808 and NGC 7089 (M 2) have extended HBs and are proxies for old stellar populations. Integrated spectra were constructed using a color magnitude diagram-based (CMD-based) method, matching observed stars to evolutionary phases and then to appropriate synthetic stellar libraries, enabling the HB morphology to be taken into account. Our findings show that the inclusion of evolved hot stars significantly improves the agreement between the model and observed spectra from the UV to the optical. The inclusion of these phases reduced the residuals in spectral comparisons. Our results reinforce that comprehensive stellar population models incorporating evolved hot components are essential to accurately date unresolved systems and to robustly trace formation histories of extragalactic galaxies.
Octans is one of the most distant (d150d\sim150pc) young stellar associations of the solar neighbourhood. Its age is still poorly constrained in the literature and requires further investigation. We take advantage of the state-of-the-art astrometry delivered by the third data release of the Gaia space mission combined with radial velocity measurements obtained from high-resolution spectroscopy to compute the 3D positions and 3D spatial velocities of the stars and derive the dynamical traceback age of the association. We performed an extensive traceback analysis using different subsamples of stars, different metrics to define the size of the association, and different models for the Galactic potential to integrate the stellar orbits in the past. We derive a dynamical age of 342+234^{+2}_{-2}Myr that is independent from stellar models and represents the most precise age estimate currently available for the Octans association. After correcting the radial velocity of the stars for the effect of gravitational redshift, we obtain a dynamical age of 331+333^{+3}_{-1}Myr, which is in very good agreement with our first solution. This shows that the effect of gravitational redshift is small for such a distant young stellar association. Our result is also consistent with the less accurate age estimates obtained in previous studies from lithium depletion (30-40Myr) and isochrones (20-30Myr). By integrating the stellar orbits in time, we show that the members of Octans and Octans-Near had different locations in the past, which indicates that the two associations are unrelated despite the close proximity in the sky. Our results confirm that it is possible to derive precise dynamical ages via the traceback method for 30\sim30Myr old stellar clusters at about 150\sim150pc with the same precision level that has been achieved in other studies for young stellar groups within 50pc of the Sun.
Octans is one of the most distant (d150d\sim150pc) young stellar associations of the solar neighbourhood. Its age is still poorly constrained in the literature and requires further investigation. We take advantage of the state-of-the-art astrometry delivered by the third data release of the Gaia space mission combined with radial velocity measurements obtained from high-resolution spectroscopy to compute the 3D positions and 3D spatial velocities of the stars and derive the dynamical traceback age of the association. We performed an extensive traceback analysis using different subsamples of stars, different metrics to define the size of the association, and different models for the Galactic potential to integrate the stellar orbits in the past. We derive a dynamical age of 342+234^{+2}_{-2}Myr that is independent from stellar models and represents the most precise age estimate currently available for the Octans association. After correcting the radial velocity of the stars for the effect of gravitational redshift, we obtain a dynamical age of 331+333^{+3}_{-1}Myr, which is in very good agreement with our first solution. This shows that the effect of gravitational redshift is small for such a distant young stellar association. Our result is also consistent with the less accurate age estimates obtained in previous studies from lithium depletion (30-40Myr) and isochrones (20-30Myr). By integrating the stellar orbits in time, we show that the members of Octans and Octans-Near had different locations in the past, which indicates that the two associations are unrelated despite the close proximity in the sky. Our results confirm that it is possible to derive precise dynamical ages via the traceback method for 30\sim30Myr old stellar clusters at about 150\sim150pc with the same precision level that has been achieved in other studies for young stellar groups within 50pc of the Sun.
Identifying methods to discover dual AGN has proven to be challenging. Several indirect tracers have been explored in the literature, including X/S-shaped radio morphologies and double-peaked (DP) emission lines in the optical spectra. However, the detection rates of confirmed dual AGN candidates from the individual methods remain extremely small. We search for binary black holes in a sample of six sources that exhibit both X-shaped radio morphology and DP emission lines using the VLBA. Three out of the six sources show dual VLBA compact components, making them strong candidates for binary black hole sources. In addition, we present deep uGMRT images revealing the exquisite details of the X-shaped wings in three sources. We present a detailed precession modeling analysis of these sources. The BH separations estimated from the simplistic geodetic precession model are incompatible with those estimated from emission line offsets and the VLBA separations. However, precession induced by a noncoplanar secondary black hole is a feasible mechanism for explaining the observed X-shaped radio morphologies and the black hole separations estimated from other methods. The black hole separations estimated from the double-peaked emission lines agree well with the VLBA compact component separations. Future multi-frequency VLBA observations will be critical in ruling out or confirming the binary black hole scenario in the three galaxies with dual component detections.
We use the linear sigma model with quarks to study the magnetic-field-induced modifications on the longitudinal screening mass for the neutral pion at one-loop level. The effects of the magnetic field are introduced into the self-energy, which contains the contributions from all the model particles. We find that, to obtain a reasonable description for the behavior with the field strength, we need to account for the magnetic field dependence of the particle masses. We also find that the couplings need to decrease fast enough with the field strength to then reach constant and smaller values as compared to their vacuum ones. The results illustrate the need to treat the magnetic corrections to the particle masses and couplings in a self-consistent manner, accounting for the backreaction of the field effects for the magnetic field dependence of the rest of the particle species and couplings in the model.
Galaxy morphology offers significant insights into the evolutionary pathways and underlying physics of galaxies. As astronomical data grows with surveys such as Euclid and Vera C. Rubin , there is a need for tools to classify and analyze the vast numbers of galaxies that will be observed. In this work, we introduce a novel classification technique blending unsupervised clustering based on morphological metrics with the scalability of supervised Convolutional Neural Networks. We delve into a comparative analysis between the well-known CAS (Concentration, Asymmetry, and Smoothness) metrics and our newly proposed EGG (Entropy, Gini, and Gradient Pattern Analysis). Our choice of the EGG system stems from its separation-oriented metrics, maximizing morphological class contrast. We leverage relationships between metrics and morphological classes, leading to an internal agreement between unsupervised clustering and supervised classification. Applying our methodology to the Sloan Digital Sky Survey data, we obtain 95% of Overall Accuracy of purely unsupervised classification and when we replicate T-Type and visually classified galaxy catalogs with accuracy of 88% and 89% respectively, illustrating the method's practicality. Furthermore, the application to Hubble Space Telescope data heralds the potential for unsupervised exploration of a higher redshift range. A notable achievement is our 95% accuracy in unsupervised classification, a result that rivals when juxtaposed with Traditional Machine Learning and closely trails when compared to Deep Learning benchmarks.
Galaxies infalling into clusters undergo both star-formation quenching and morphological transformation due to environmental effects. We investigate these processes and their timescales using a local sample of 20,191 cluster and 11,674 field galaxies from SDSS. By analysing morphology as a function of distance from the star-formation main sequence, we show that environmental influence is especially pronounced for low-mass galaxies, which emerge from the green valley with early-type morphologies before their star formation is fully suppressed. Using the galaxies' positions in the clusters' Projected Phase Space, we examine the evolution of blue cloud, green valley, and red sequence fractions as a function of time since infall. Interestingly, the green valley fraction remains constant with time since infall, suggesting a balanced flow of galaxies in and out of this class. We estimate that galaxies less massive than 1010M10^{10}\rm M_{\odot} spend approximately 0.4 Gyr in the green valley. By comparing quenched and early-type populations, we provide further evidence for the ``slow-then-rapid'' quenching model and suggest that it can also be applied to morphological transitions. Our results indicate that morphological transformation occurs at larger radii than complete star-formation quenching. About 75% of galaxies undergoing morphological transition in clusters are spirals evolving into S0s, suggesting that infalling galaxies retain their disks, while massive ellipticals are relics of early merger events. Finally, we show it takes approximately 2.5 and 1.2 Gyr after the delay-time (3.8Gyr\sim 3.8 {\rm Gyr}) for the population of low mass galaxies in clusters to reach a 50% threshold in quenched and early-type fraction, respectively. These findings suggest morphological transition precedes full star formation quenching, with both processes possibly being causally linked.
Context. Star-forming regions are excellent benchmarks for testing and validating theories of star formation and stellar evolution. The Perseus star-forming region being one of the youngest (<10 Myr), closest (280-320 pc), and most studied in the literature, is a fundamental benchmark. Aims. We aim to study the membership, phase-space structure, mass, and energy (kinetic plus potential) distribution of the Perseus star-forming region using public catalogues (Gaia, APOGEE, 2MASS, PanSTARRS). Methods. We use Bayesian methodologies accounting for extinction to identify the Perseus physical groups in the phase-space, retrieve their candidate members, derive their properties (age, mass, 3D positions, 3D velocities, and energy), and attempt to reconstruct their origin. Results. We identify 1052 candidate members in seven physical groups (one of them new) with ages between 3 and 10 Myr, dynamical super-virial states, and large fractions of energetically unbound stars. Their mass distributions are broadly compatible with that of Chabrier for masses >0.1 MM_\odot and do not show hints of over-abundance of low-mass stars in NGC1333 with respect to IC348. These groups' ages, spatial structure, and kinematics are compatible with at least three generations of stars. Future work is still needed to clarify if the formation of the youngest was triggered by the oldest. Conclusions. The exquisite Gaia data complemented with public archives and mined with comprehensive Bayesian methodologies allow us to identify 31% more members than in previous studies, discover a new physical group (Gorgophone: 7 Myr, 191 members, and 145 MM_\odot), and confirm that the spatial, kinematic, and energy distributions of these groups support the hierarchical star-formation scenario.
We present a study of a sample of 254 clusters from the SDSS-DR7 Yang Catalog and an auxiliary sample of field galaxies to perform a detailed investigation on how galaxy quenching depends on both environment and galaxy stellar mass. Our samples are restricted to 0.03\leqz\leq0.1 and we only consider clusters with log(Mhalo/M)14\rm log(M_{halo}/M_{\odot}) \geq 14. Comparing properties of field and cluster galaxies in the Blue Cloud, Green Valley and Red Sequence, we find evidence that field galaxies in the red sequence hosted star formation events 2.1±0.7\rm 2.1 \pm 0.7 Gyr ago, on average, more recently than galaxies in cluster environments. Dissecting the star formation rate vs stellar mass diagram we show how morphology rapidly changes after reaching the green valley region, while the star formation rate keeps decreasing. In addition, we use the relation between location in the projected phase space and infall time to explore the time delay between morphological and specific Star Formation Rate variations. We estimate that the transition from late to early-type morphology happens in Δtinf\rm \Delta t_{inf} \sim1 Gyr, whereas the quenching of star formation takes \sim3 Gyr. The time-scale we estimate for morphological transitions is similar to the expected for the delayed-then-rapid quenching model. Therefore, we suggest that the delay phase is characterized mostly by morphological transition, which then contributes morphological quenching as an additional ingredient in galaxy evolution.
Backsplash galaxies are those that traverse and overshoot cluster cores as they fall into these structures. They are affected by environment, and should stand out in contrast to the infalling population. We target galaxies in the vicinity of clusters (R>R200) and select a sample in projected phase space (PPS), from the compilation of Sampaio et al. based on SDSS data. We present a statistical analysis, comparing two regions in PPS, with the same projected distance to the cluster but different velocity. The analysis relies on the presence of variations in the stellar population content of backsplash galaxies. We find a lower limit in the fractional contribution of ~5% with respect to the general sample of infalling galaxies at similar group-centric distance when using single line strength analysis, or ~15-30% when adopting bivariate distributions. The stellar populations show a subtle but significant difference towards older ages, and a higher fraction of quiescent galaxies. We also compare this set with a general field sample, where a substantially larger difference in galaxy properties is found, with the field sample being consistently younger, metal poorer and with a lower fraction of quiescent galaxies. Noting that our "cluster" sample is located outside of the virial radius, we expect this difference to be caused by pre-processing of the infalling galaxies in the overall higher density regions.
Morphological classification of galaxies becomes increasingly challenging with redshift. We apply a hybrid supervised-unsupervised method to classify 14,000\sim 14,000 galaxies in the CANDELS fields at 0.2z2.40.2 \leq z \leq 2.4 into spheroid, disk, and irregular systems. Unlike previous works, our method is applied to redshift bins of width 0.2. Comparison between models applied to a wide redshift range versus bin-specific models reveals significant differences in galaxy morphology beyond z1z \geq 1 and a consistent 25%\sim 25\% disagreement. This suggests that using a single model across wide redshift ranges may introduce biases due to the large time intervals involved compared to galaxy evolution timescales. Using the FERENGI code to assess the impact of cosmological effects, we find that flux dimming and smaller angular scales may lead to the misclassification of up to 18%18\% of disk galaxies as spheroids or irregulars. Contrary to previous studies, we find an almost constant fraction of disks (60%\sim 60\%) and spheroids (30%\sim 30\%) across redshifts. We attribute discrepancies with earlier works, which suggest a decreasing fraction of disks beyond z1z \sim 1, to the biases introduced by visual classification. Our claim is further strengthened by the striking agreement to the results reported by Lee et al. (2024) using an objective, unsupervised method applied to James Webb Space Telescope data. Exploring mass dependence, we observe a 40%\sim 40\% increase in the fraction of massive (Mstellar1010.5MM_{\rm stellar} \geq 10^{10.5}{\rm M}_{\odot}) spheroids with decreasing redshift, well balanced with a decrease of 20%\sim 20\% in the fraction of Mstellar1010.5MM_{\rm stellar} \geq 10^{10.5}{\rm M}_{\odot} disks, suggesting that merging massive disk galaxies may form spheroidal systems.
Most of what we know about the formation of stars, and essentially everything we know about the formation of planets, comes from observations of our solar neighborhood within 2 kpc of the Sun. Before 2018, accurate distance measurements needed to turn the 2D Sky into a faithful 3D physical picture of the distribution of stars, and the interstellar matter that forms them, were few and far between. Here, we offer a holistic review of how, since 2018, data from the Gaia mission are revealing previously unseen and often unexpected 3D distributions of gas, dust, and young stars in the solar neighborhood. We summarize how new extinction-based techniques yield 3D dust maps and how the density structure mapped out offers key context for measuring young stars' 3D positions from Gaia and VLBI. We discuss how a subset of young stars in Gaia with measured radial velocities and proper motions is being used to recover 3D cloud motion and characterize the internal dynamics of individual star-forming regions. We review relationships between newly-identified clusters and streams of young stars and the molecular interstellar medium from which they evolve. The combination of these measures of gas and stars' 3D distribution and 3D motions provides unprecedented data for comparison with simulations and reframes our understanding of local star formation in a larger Galactic context. This new 3D view of our solar neighborhood in the age of Gaia shows that star-forming regions once thought to be isolated are often connected on kiloparsec scales, causing us to reconsider models for the arrangement of gas and young stars in galaxies.
There is evidence that the properties of hadrons are modified in a nuclear medium. Information about the medium modifications of the internal structure of hadrons is fundamental for the study of dense nuclear matter and high-energy processes, including heavy-ion and nucleus--nucleus collisions. At the moment, however, empirical information about medium modifications of hadrons is limited; therefore, theoretical studies are essential for progress in the field. In the present work, we review theoretical studies of the electromagnetic and axial form factors of octet baryons in symmetric nuclear matter. The calculations are based on a model that takes into account the degrees of freedom revealed in experimental studies of low and intermediate square transfer momentum q2=Q2q^2=-Q^2: valence quarks and meson cloud excitations of baryon cores. The formalism combines a covariant constituent quark model, developed for a free space (vacuum) with the quark--meson coupling model for extension to the nuclear medium. We conclude that the nuclear medium modifies the baryon properties differently according to the flavor content of the baryons and the medium density. The effects of the medium increase with density and are stronger (quenched or enhanced) for light baryons than for heavy baryons. In particular, the in-medium neutrino--nucleon and antineutrino--nucleon cross-sections are reduced compared to the values in free space. The proposed formalism can be extended to densities above the normal nuclear density and applied to neutrino--hyperon and antineutrino--hyperon scattering in dense nuclear matter.
Thanks to Integral Field Unit survey data it is possible to explore in detail the link between the formation of the stellar content in galaxies and the drivers of evolution. Traditionally, scaling relations have connected galaxy-wide parameters such as stellar mass (Ms_s), morphology or average velocity dispersion (σ\sigma) to the star formation histories (SFHs). We study a high quality sample of SDSS-MaNGA spectra to test the possibility that sub-galaxy (\sim2\,kpc) scales are dominant, instead of galaxy-wide parameters. We find a strong correlation between local velocity dispersion and key line strengths that depend on the SFHs, allowing us to make the ansatz that this indicator - that maps the local gravitational potential - is the major driver of star formation in galaxies, whereas larger scales play a role of a secondary nature. Galactocentric distance has a weaker correlation, suggesting that the observed radial gradients effectively reflect local variations of velocity dispersion. In our quest for a cause, instead of a correlation, we contrast σ\sigma with local stellar mass, that appears less correlated with population properties. We conclude that the inherently higher uncertainty in Ms_s may explain its lower correlation with respect to σ\sigma, but the extra uncertainty needed for σ\sigma to have similar correlations as Ms_s is rather high. Therefore we posit local velocity dispersion as the major driver of evolution, a result that should be reproduced by hydrodynamical models at the proper resolution.
Measurements of the radius and limb brightening of the Sun provide important information about the solar atmosphere structure and temperature. The solar radius increases as the observation at radio frequency decreases, indicating that each emission originates higher in the atmosphere. Thus, different layers of the solar atmosphere can be probed by observing at multiple wavelengths. In this work, we determined the average radius and limb brightening at 100, 212, 230, and 405 GHz, using data from the Solar Submillimeter Telescope and ALMA's single-dish observations. For the first time, limb brightening values for frequencies of 212 and 405 GHz were estimated. At sub-THz frequencies, the observed limb brightening may affect the solar radius measurements. We use two different and well known approaches to determine the radius: the half-power method and the inflection-point method. We investigate how the antenna beam size and the limb brightening level, LB, can affect the radius measurements using both methods. Our results showed that the inflection-point method is the least affected by these parameters, and should thus be used for solar radius estimates at radio wavelengths. The measured average radii are 968"~±\pm~3" (100 GHz), 963"~±\pm~3" (212 GHz), 963"~±\pm~2" (230 GHz), and 963"~±\pm~5" (405 GHz). Finally, we used forward modeling to estimate the ranges of LB of the solar disk resulting in 5%-19% (100 GHz), 2%-12% (212 GHz), 6%-18% (230 GHz), and 3%-17% (405 GHz). Both radius and limb brightening estimates agree with previous measurements reported in the literature.
This research examines how central and satellite galaxies evolve in varying environments, from isolated systems to dense clusters, utilizing Sloan Digital Sky Survey data and advanced analysis techniques. The study identifies distinct mechanisms that transform galaxies from star-forming to quiescent states, quantifying the impact of environment on quenching timescales, especially for lower-mass galaxies.
We explore the modifications of hadron structure in a nuclear medium, focusing on the spacelike electromagnetic form factors (EMFFs) of light and heavy-light pseudoscalar mesons. By combining the light-front quark model (LFQM) with the quark-meson coupling (QMC) model, which reasonably reproduces EMFFs in free space and the saturation properties of nuclear matter, respectively, we systematically analyze the in-medium EMFFs and charge radii of mesons with various quark flavors. Our findings show that the EMFFs of charged (neutral) mesons exhibit a faster fall-off (increase) with increasing four-momentum transfer squared and nuclear density. Consequently, the absolute value of the charge radii of mesons increases with nuclear density, where the rate of increase depends on their quark flavor contents. We observe that the EMFFs of pions and kaons undergo significant modifications in the nuclear medium, while heavy-light mesons are only slightly modified. By decomposing the quark flavor contributions to EMFFs, we show that the medium effects primarily impact the light-quark sector, leaving the heavy-quark sector nearly unaffected. The results of this study further suggest the importance of the medium effects at the quark level.
A common property of globular clusters (GC) is to host multiple populations characterized by peculiar chemical abundances. Recent photometric studies suggest that the He content could vary between the populations of a GC by up to Δ\DeltaHe \sim 0.13, in mass fraction. The initial He content impacts the evolution of low-mass stars by ultimately modifying their lifetimes, luminosity, temperatures, and, more generally, the morphology of post-RGB evolutionary tracks in the Hertzsprung-Russell diagram. We present new physically accurate isochrones with different initial He-enrichments and metallicities, with a focus on the methods implemented to deal with the post-RGB phases. The isochrones are based on tracks computed with the stellar evolution code STAREVOL for different metallicities (Z = 0.0002, 0.0009, 0.002, and 0.008) and with different He-enrichment (from 0.25 to 0.6 in mass fraction). We describe the effect of He-enrichment on the morphology of the isochrones and test these by comparing the predicted number counts of HB and AGB stars with those of selected GCs. Comparing the number ratios, we find that our new theoretical ones agree with the observed values within 1σ1\sigma in most cases. The work presented here sets the ground for future studies on stellar populations in globular clusters, in which the abundances of light elements in He-enhanced models will rely on different assumptions for the causes of this enrichment. The developed methodology permits the computation of isochrones from new stellar tracks with non-canonical stellar processes. The checked number counts ensure that, at least in this reference set, the contribution of the luminous late stages of stellar evolution to the integrated light of a GC is represented adequately.
There are no more papers matching your filters at the moment.