Universidade Federal de São João Del Rey
The perceived risk and reward for a given situation can vary depending on resource availability, accumulated wealth, and other extrinsic factors such as individual backgrounds. Based on this general aspect of everyday life, here we use evolutionary game theory to model a scenario with randomly perturbed payoffs in a prisoner's dilemma game. The perception diversity is modeled by adding a zero-average random noise in the payoff entries and a Monte-Carlo simulation is used to obtain the population dynamics. This payoff heterogeneity can promote and maintain cooperation in a competitive scenario where only defectors would survive otherwise. In this work, we give a step further understanding the role of heterogeneity by investigating the effects of quenched disorder in the critical properties of random games. We observe that payoff fluctuations induce a very slow dynamic, making the cooperation decay behave as power laws with varying exponents, instead of the usual exponential decay after the critical point, showing the emergence of a Griffiths phase. We also find a symmetric Griffiths phase near the defector's extinction point when fluctuations are present, indicating that Griffiths phases may be frequent in evolutionary game dynamics and play a role in the coexistence of different strategies.
The indiscriminate use of antibiotics and the emergence of resistant microorganisms have become a major challenge for the food industry. The purpose of this work was to microencapsulate the bacteriophage UFV-AREG1 in a calcium alginate matrix using microfluidic devices and to study the viability and efficiency of retention. The microcapsules were added to gel of propylene glycol for use as an antimicrobial in the food industry. The technique showed the number of the phage encapsulation, yielding drops with an average 100-250 μ\mum of diameter, 82.1 ±\pm 2% retention efficiency and stability in the gel matrix for 21 days. The gel added to the microencapsulated phage showed efficiency (not detectable on the surface) in reducing bacterial contamination on the surface at a similar level to antimicrobial chemicals (alcohol 70%). Therefore, it was possible to microencapsulate bacteriophages in alginate-Ca and apply the microcapsules in gels for use as sanitizers in the food industry.
There are no more papers matching your filters at the moment.