Universit´e de Montpellier 2
We introduce a notion of derived Azumaya's algebras over rings and schemes. We prove that any such algebra BB on a scheme XX provides a class ϕ(B)\phi(B) in Het1(X,Z)×Het2(X,Gm)H^{1}_{et}(X,\mathbb{Z})\times H^{2}_{et}(X,\mathbb{G}_{m}). We prove that for XX a quasi-compact and quasi-separated scheme ϕ\phi defines a bijective correspondence, and in particular that any class in Het2(X,Gm)H^{2}_{et}(X,\mathbb{G}_{m}), torsion or not, can be represented by a derived Azumaya's algebra on XX. Our result is a consequence of a more general theorem about the existence of compact generators in \emph{twisted derived categories, with coefficients in any local system of reasonable dg-categories}, generalizing the well known existence of compact generators in derived categories of quasi-coherent sheaves of \cite{bv} (corresponding to the trivial local system of dg-categories). A huge part of this paper concerns the correct treatment of these twisted derived categories, as well as the proof that the existence of compact generators locally for the fppf topology implies the existence of a global compact generator.
We prove two flat descent statements for Artin n-stacks. We first show that an n-stack for the etale topology which is an Artin n-stack in the sense of HAGII, is also an n-stack for the fppf topology. Moreover, an n-stack for the fppf topology which possess a fppf n-atlas is an Artin n-stack (i.e. possesses a smooth n-atlas). We deduce from these results some comparison statements between fppf and etale (non-ablelian) cohomolgies. This paper is written in the setting of derived algebraic geometry and its results are also valid for derived Artin n-stacks.
We discuss a new class of driven lattice gas obtained by coupling the one-dimensional totally asymmetric simple exclusion process to Langmuir kinetics. In the limit where these dynamics are competing, the resulting non-conserved flow of particles on the lattice leads to stationary regimes for large but finite systems. We observe unexpected properties such as localized boundaries (domain walls) that separate coexisting regions of low and high density of particles (phase coexistence). A rich phase diagram, with high an low density phases, two and three phase coexistence regions and a boundary independent ``Meissner'' phase is found. We rationalize the average density and current profiles obtained from simulations within a mean-field approach in the continuum limit. The ensuing analytic solution is expressed in terms of Lambert WW-functions. It allows to fully describe the phase diagram and extract unusual mean-field exponents that characterize critical properties of the domain wall. Based on the same approach, we provide an explanation of the localization phenomenon. Finally, we elucidate phenomena that go beyond mean-field such as the scaling properties of the domain wall.
A total dominating set of a graph G=(V,E)G=(V,E) is a subset DVD \subseteq V such that every vertex in VV is adjacent to some vertex in DD. Finding a total dominating set of minimum size is NP-hard on planar graphs and W[2]-complete on general graphs when parameterized by the solution size. By the meta-theorem of Bodlaender et al. [J. ACM, 2016], there exists a linear kernel for Total Dominating Set on graphs of bounded genus. Nevertheless, it is not clear how such a kernel can be effectively constructed, and how to obtain explicit reduction rules with reasonably small constants. Following the approach of Alber et al. [J. ACM, 2004], we provide an explicit kernel for Total Dominating Set on planar graphs with at most 410k410k vertices, where kk is the size of the solution. This result complements several known constructive linear kernels on planar graphs for other domination problems such as Dominating Set, Edge Dominating Set, Efficient Dominating Set, Connected Dominating Set, or Red-Blue Dominating Set.
There are no more papers matching your filters at the moment.