Academy of Broadcasting ScienceNational Radio and Television Administration
Redistributing the Precision and Content in 3D-LUT-based Inverse Tone-mapping for HDR/WCG Display
ITM(inverse tone-mapping) converts SDR (standard dynamic range) footage to HDR/WCG (high dynamic range /wide color gamut) for media production. It happens not only when remastering legacy SDR footage in front-end content provider, but also adapting on-theair SDR service on user-end HDR display. The latter requires more efficiency, thus the pre-calculated LUT (look-up table) has become a popular solution. Yet, conventional fixed LUT lacks adaptability, so we learn from research community and combine it with AI. Meanwhile, higher-bit-depth HDR/WCG requires larger LUT than SDR, so we consult traditional ITM for an efficiency-performance trade-off: We use 3 smaller LUTs, each has a non-uniform packing (precision) respectively denser in dark, middle and bright luma range. In this case, their results will have less error only in their own range, so we use a contribution map to combine their best parts to final result. With the guidance of this map, the elements (content) of 3 LUTs will also be redistributed during training. We conduct ablation studies to verify method's effectiveness, and subjective and objective experiments to show its practicability. Code is available at: this https URL.
View blog
Resources53
Channel Attention and Multi-level Features Fusion for Single Image Super-Resolution
Convolutional neural networks (CNNs) have demonstrated superior performance in super-resolution (SR). However, most CNN-based SR methods neglect the different importance among feature channels or fail to take full advantage of the hierarchical features. To address these issues, this paper presents a novel recursive unit. Firstly, at the beginning of each unit, we adopt a compact channel attention mechanism to adaptively recalibrate the channel importance of input features. Then, the multi-level features, rather than only deep-level features, are extracted and fused. Additionally, we find that it will force our model to learn more details by using the learnable upsampling method (i.e., transposed convolution) only on residual branch (instead of using it both on residual branch and identity branch) while using the bicubic interpolation on the other branch. Analytic experiments show that our method achieves competitive results compared with the state-of-the-art methods and maintains faster speed as well.
View blog
Resources
There are no more papers matching your filters at the moment.