multimedia
Time awareness is a fundamental ability of omni large language models, especially for understanding long videos and answering complex questions. Previous approaches mainly target vision-language scenarios and focus on the explicit temporal grounding questions, such as identifying when a visual event occurs or determining what event happens at aspecific time. However, they often make insufficient use of the audio modality, and overlook implicit temporal grounding across modalities--for example, identifying what is visually present when a character speaks, or determining what is said when a visual event occurs--despite such cross-modal temporal relations being prevalent in real-world scenarios. In this paper, we propose ChronusOmni, an omni large language model designed to enhance temporal awareness for both explicit and implicit audiovisual temporal grounding. First, we interleave text-based timestamp tokens with visual and audio representations at each time unit, enabling unified temporal modeling across modalities. Second, to enforce correct temporal ordering and strengthen fine-grained temporal reasoning, we incorporate reinforcement learning with specially designed reward functions. Moreover, we construct ChronusAV, a temporally-accurate, modality-complete, and cross-modal-aligned dataset to support the training and evaluation on audiovisual temporal grounding task. Experimental results demonstrate that ChronusOmni achieves state-of-the-art performance on ChronusAV with more than 30% improvement and top results on most metrics upon other temporal grounding benchmarks. This highlights the strong temporal awareness of our model across modalities, while preserving general video and audio understanding capabilities.
Visual concept composition, which aims to integrate different elements from images and videos into a single, coherent visual output, still falls short in accurately extracting complex concepts from visual inputs and flexibly combining concepts from both images and videos. We introduce Bind & Compose, a one-shot method that enables flexible visual concept composition by binding visual concepts with corresponding prompt tokens and composing the target prompt with bound tokens from various sources. It adopts a hierarchical binder structure for cross-attention conditioning in Diffusion Transformers to encode visual concepts into corresponding prompt tokens for accurate decomposition of complex visual concepts. To improve concept-token binding accuracy, we design a Diversify-and-Absorb Mechanism that uses an extra absorbent token to eliminate the impact of concept-irrelevant details when training with diversified prompts. To enhance the compatibility between image and video concepts, we present a Temporal Disentanglement Strategy that decouples the training process of video concepts into two stages with a dual-branch binder structure for temporal modeling. Evaluations demonstrate that our method achieves superior concept consistency, prompt fidelity, and motion quality over existing approaches, opening up new possibilities for visual creativity.
19
Modeling relightable and animatable human avatars from monocular video is a long-standing and challenging task. Recently, Neural Radiance Field (NeRF) and 3D Gaussian Splatting (3DGS) methods have been employed to reconstruct the avatars. However, they often produce unsatisfactory photo-realistic results because of insufficient geometrical details related to body motion, such as clothing wrinkles. In this paper, we propose a 3DGS-based human avatar modeling framework, termed as Relightable and Dynamic Gaussian Avatar (RnD-Avatar), that presents accurate pose-variant deformation for high-fidelity geometrical details. To achieve this, we introduce dynamic skinning weights that define the human avatar's articulation based on pose while also learning additional deformations induced by body motion. We also introduce a novel regularization to capture fine geometric details under sparse visual cues. Furthermore, we present a new multi-view dataset with varied lighting conditions to evaluate relight. Our framework enables realistic rendering of novel poses and views while supporting photo-realistic lighting effects under arbitrary lighting conditions. Our method achieves state-of-the-art performance in novel view synthesis, novel pose rendering, and relighting.
We introduce a novel pipeline for joint audio-visual editing that enhances the coherence between edited video and its accompanying audio. Our approach first applies state-of-the-art video editing techniques to produce the target video, then performs audio editing to align with the visual changes. To achieve this, we present a new video-to-audio generation model that conditions on the source audio, target video, and a text prompt. We extend the model architecture to incorporate conditional audio input and propose a data augmentation strategy that improves training efficiency. Furthermore, our model dynamically adjusts the influence of the source audio based on the complexity of the edits, preserving the original audio structure where possible. Experimental results demonstrate that our method outperforms existing approaches in maintaining audio-visual alignment and content integrity.
This paper presents a simple method that allows to easily enhance textual pre-trained large language models with speech information, when fine-tuned for a specific classification task. A classical issue with the fusion of many embeddings from audio with text is the large length of the audio sequence compared to the text one. Our method benefits from an existing speech tokenizer trained for Audio Speech Recognition that output long sequences of tokens from a large vocabulary, making it difficult to integrate it at low cost in a large language model. By applying a simple lasso-based feature selection on multimodal Bag-of-Words representation, we retain only the most important audio tokens for the task, and adapt the language model to them with a self-supervised language modeling objective, before fine-tuning it on the downstream task. We show this helps to improve the performances compared to an unimodal model, to a bigger SpeechLM or to integrating audio via a learned representation. We show the effectiveness of our method on two recent Argumentative Fallacy Detection and Classification tasks where the use of audio was believed counterproductive, reaching state-of-the-art results. We also provide an in-depth analysis of the method, showing that even a random audio token selection helps enhancing the unimodal model. Our code is available [online](this https URL).
Multimodal Large Language Models (MLLMs) are increasingly vulnerable to multimodal Indirect Prompt Injection (IPI) attacks, which embed malicious instructions in images, videos, or audio to hijack model behavior. Existing defenses, designed primarily for text-only LLMs, are unsuitable for countering these multimodal threats, as they are easily bypassed, modality-dependent, or generalize poorly. Inspired by activation steering researches, we hypothesize that a robust, general defense independent of modality can be achieved by steering the model's behavior in the representation space. Through extensive experiments, we discover that the instruction-following behavior of MLLMs is encoded in a subspace. Steering along directions within this subspace can enforce adherence to user instructions, forming the basis of a defense. However, we also found that a naive defense direction could be coupled with a utility-degrading direction, and excessive intervention strength harms model performance. To address this, we propose ARGUS, which searches for an optimal defense direction within the safety subspace that decouples from the utility degradation direction, further combining adaptive strength steering to achieve a better safety-utility trade-off. ARGUS also introduces lightweight injection detection stage to activate the defense on-demand, and a post-filtering stage to verify defense success. Experimental results show that ARGUS can achieve robust defense against multimodal IPI while maximally preserving the MLLM's utility.
This work introduces a new task, text-conditioned selective video-to-audio (V2A) generation, which produces only the user-intended sound from a multi-object video. This capability is especially crucial in multimedia production, where audio tracks are handled individually for each sound source for precise editing, mixing, and creative control. However, current approaches generate single source-mixed sounds at once, largely because visual features are entangled, and region cues or prompts often fail to specify the source. We propose SelVA, a novel text-conditioned V2A model that treats the text prompt as an explicit selector of target source and modulates video encoder to distinctly extract prompt-relevant video features. The proposed supplementary tokens promote cross-attention by suppressing text-irrelevant activations with efficient parameter tuning, yielding robust semantic and temporal grounding. SelVA further employs a self-augmentation scheme to overcome the lack of mono audio track supervision. We evaluate SelVA on VGG-MONOAUDIO, a curated benchmark of clean single-source videos for such a task. Extensive experiments and ablations consistently verify its effectiveness across audio quality, semantic alignment, and temporal synchronization. Code and demo are available at this https URL.
AV-Edit, from Xiaomi Inc. and Wuhan University, introduces a multimodal generative framework for fine-grained sound effect editing in videos, enabling visually synchronized addition, removal, or replacement of sounds. It achieved state-of-the-art performance on a new benchmark, outperforming existing methods in objective and subjective evaluations.
World models simulate environmental dynamics to enable agents to plan and reason about future states. While existing approaches have primarily focused on visual observations, real-world perception inherently involves multiple sensory modalities. Audio provides crucial spatial and temporal cues such as sound source localization and acoustic scene properties, yet its integration into world models remains largely unexplored. No prior work has formally defined what constitutes an audio-visual world model or how to jointly capture binaural spatial audio and visual dynamics under precise action control with task reward prediction. This work presents the first formal framework for Audio-Visual World Models (AVWM), formulating multimodal environment simulation as a partially observable Markov decision process with synchronized audio-visual observations, fine-grained actions, and task rewards. To address the lack of suitable training data, we construct AVW-4k, a dataset comprising 30 hours of binaural audio-visual trajectories with action annotations and reward signals across 76 indoor environments. We propose AV-CDiT, an Audio-Visual Conditional Diffusion Transformer with a novel modality expert architecture that balances visual and auditory learning, optimized through a three-stage training strategy for effective multimodal integration. Extensive experiments demonstrate that AV-CDiT achieves high-fidelity multimodal prediction across visual and auditory modalities with reward. Furthermore, we validate its practical utility in continuous audio-visual navigation tasks, where AVWM significantly enhances the agent's performance.
MoLT (Mixture of Layer-Wise Tokens) presents an efficient framework for audio-visual learning by distilling and fusing layer-wise tokens from frozen transformer backbones. This method achieves state-of-the-art performance across diverse audio-visual tasks while significantly reducing trainable parameters and GPU memory usage.
Tracking and segmentation play essential roles in video understanding, providing basic positional information and temporal association of objects within video sequences. Despite their shared objective, existing approaches often tackle these tasks using specialized architectures or modality-specific parameters, limiting their generalization and scalability. Recent efforts have attempted to unify multiple tracking and segmentation subtasks from the perspectives of any modality input or multi-task inference. However, these approaches tend to overlook two critical challenges: the distributional gap across different modalities and the feature representation gap across tasks. These issues hinder effective cross-task and cross-modal knowledge sharing, ultimately constraining the development of a true generalist model. To address these limitations, we propose a universal tracking and segmentation framework named SATA, which unifies a broad spectrum of tracking and segmentation subtasks with any modality input. Specifically, a Decoupled Mixture-of-Expert (DeMoE) mechanism is presented to decouple the unified representation learning task into the modeling process of cross-modal shared knowledge and specific information, thus enabling the model to maintain flexibility while enhancing generalization. Additionally, we introduce a Task-aware Multi-object Tracking (TaMOT) pipeline to unify all the task outputs as a unified set of instances with calibrated ID information, thereby alleviating the degradation of task-specific knowledge during multi-task training. SATA demonstrates superior performance on 18 challenging tracking and segmentation benchmarks, offering a novel perspective for more generalizable video understanding.
SenseNova-SI, developed by SenseTime Research, introduces a family of multimodal foundation models that significantly enhance spatial intelligence through a data-centric approach. These models achieve state-of-the-art performance across various spatial reasoning benchmarks and show immediate utility for robotic manipulation tasks.
51
Researchers from South China University of Technology, Sichuan University, The Hong Kong Polytechnic University, and Peng Cheng Laboratory introduced Multi-agent Undercover Gaming (MUG), a protocol that integrates social deduction game theory and counterfactual reasoning to significantly reduce hallucination in multimodal large language models. MUG notably improved performance on reasoning benchmarks like MMMU by up to 5.3% and achieved the highest average scores on hallucination detection benchmarks, including 58.0% on HallusionBench with InternVL3-14B.
Researchers at CASIA and Beihang University developed ProAV-DiT, a framework that represents audio as a video-like structure to enhance synchronized audio-video generation. It achieves state-of-the-art audiovisual alignment and generation quality, reducing inference time by 2.2x compared to prior methods.
A training-free inference procedure, Time-to-Move (TTM), leverages dual-clock denoising to enable precise motion and appearance control in existing image-to-video diffusion models. This method surpasses training-based approaches in motion adherence and visual quality, while remaining plug-and-play across diverse backbones like SVD and CogVideoX.
4
Bangladesh's low-income population faces major barriers to affordable legal advice due to complex legal language, procedural opacity, and high costs. Existing AI legal assistants lack Bengali-language support and jurisdiction-specific adaptation, limiting their effectiveness. To address this, we developed Mina, a multilingual LLM-based legal assistant tailored for the Bangladeshi context. It employs multilingual embeddings and a RAG-based chain-of-tools framework for retrieval, reasoning, translation, and document generation, delivering context-aware legal drafts, citations, and plain-language explanations via an interactive chat interface. Evaluated by law faculty from leading Bangladeshi universities across all stages of the 2022 and 2023 Bangladesh Bar Council Exams, Mina scored 75-80% in Preliminary MCQs, Written, and simulated Viva Voce exams, matching or surpassing average human performance and demonstrating clarity, contextual understanding, and sound legal reasoning. Even under a conservative upper bound, Mina operates at just 0.12-0.61% of typical legal consultation costs in Bangladesh, yielding a 99.4-99.9\% cost reduction relative to human-provided services. These results confirm its potential as a low-cost, multilingual AI assistant that automates key legal tasks and scales access to justice, offering a real-world case study on building domain-specific, low-resource systems and addressing challenges of multilingual adaptation, efficiency, and sustainable public-service AI deployment.
A framework called Open-o3 Video enables grounded video reasoning by integrating explicit spatio-temporal evidence directly into the model's output. This approach achieves state-of-the-art performance on the V-STAR benchmark while providing precise timestamps and bounding boxes for supporting visual cues.
37
Traditional Chinese Medicine (TCM), with a history spanning over two millennia, plays a role in global healthcare. However, applying large language models (LLMs) to TCM remains challenging due to its reliance on holistic reasoning, implicit logic, and multimodal diagnostic cues. Existing TCM-domain LLMs have made progress in text-based understanding but lack multimodal integration, interpretability, and clinical applicability. To address these limitations, we developed BenCao, a ChatGPT-based multimodal assistant for TCM, integrating structured knowledge bases, diagnostic data, and expert feedback refinement. BenCao was trained through natural language instruction tuning rather than parameter retraining, aligning with expert-level reasoning and ethical norms specific to TCM. The system incorporates a comprehensive knowledge base of over 1,000 classical and modern texts, a scenario-based instruction framework for diverse interactions, a chain-of-thought simulation mechanism for interpretable reasoning, and a feedback refinement process involving licensed TCM practitioners. BenCao connects to external APIs for tongue-image classification and multimodal database retrieval, enabling dynamic access to diagnostic resources. In evaluations across single-choice question benchmarks and multimodal classification tasks, BenCao achieved superior accuracy to general-domain and TCM-domain models, particularly in diagnostics, herb recognition, and constitution classification. The model was deployed as an interactive application on the OpenAI GPTs Store, accessed by nearly 1,000 users globally as of October 2025. This study demonstrates the feasibility of developing a TCM-domain LLM through natural language-based instruction tuning and multimodal integration, offering a practical framework for aligning generative AI with traditional medical reasoning and a scalable pathway for real-world deployment.
NExT-OMNI introduces the first open-source omnimodal foundation model leveraging Discrete Flow Matching, achieving unified understanding, generation, and retrieval across text, image, video, and audio. It demonstrates superior performance over autoregressive models in multimodal retrieval, competitive results in multi-turn interactions, and improves inference speed by 1.2x.
Researchers from Shanghai Jiao Tong University, Nanyang Technological University, The Chinese University of Hong Kong, and Alibaba Group developed OMNI-CAPTIONER, a framework that includes an agentic data pipeline, dedicated models, and a benchmark to address the detail-hallucination trade-off in Omni Language Models. Their Omni-Captioner-7B model achieved a new state-of-the-art on the VDC benchmark with 55.0% accuracy and superior performance on the novel Omni-Cloze benchmark, scoring 53.5% accuracy.
12
There are no more papers matching your filters at the moment.