Adelaide AIML
Researchers from Nanjing University of Science and Technology, Baidu Inc., Adelaide AIML, and Singapore University of Technology and Design introduced ViLoMem, a dual-stream memory framework, enabling multimodal large language models (MLLMs) to learn from past multimodal reasoning and perception errors. The framework achieved consistent improvements in accuracy across six multimodal benchmarks, including gains of up to +6.48 on MathVision for GPT-4.1.
2
Symbolic computer vision represents diagrams through explicit logical rules and structured representations, enabling interpretable understanding in machine vision. This requires fundamentally different learning paradigms from pixel-based visual models. Symbolic visual learners parse diagrams into geometric primitives-points, lines, and shapes-whereas pixel-based learners operate on textures and colors. We propose a novel self-supervised symbolic auto-encoder that encodes diagrams into structured primitives and their interrelationships within the latent space, and decodes them through our executable engine to reconstruct the input diagrams. Central to this architecture is Symbolic Hierarchical Process Reward Modeling, which applies hierarchical step-level parsing rewards to enforce point-on-line, line-on-shape, and shape-on-relation consistency. Since vanilla reinforcement learning exhibits poor exploration in the policy space during diagram reconstruction; we thus introduce stabilization mechanisms to balance exploration and exploitation. We fine-tune our symbolic encoder on downstream tasks, developing a neuro-symbolic system that integrates the reasoning capabilities of neural networks with the interpretability of symbolic models through reasoning-grounded visual rewards. Evaluations across reconstruction, perception, and reasoning tasks demonstrate the effectiveness of our approach: achieving a 98.2% reduction in MSE for geometric diagram reconstruction, surpassing GPT-4o by 0.6% with a 7B model on chart reconstruction, and improving by +13% on the MathGlance perception benchmark, and by +3% on MathVerse and GeoQA reasoning benchmarks.
There are no more papers matching your filters at the moment.