INFN Sezione di Roma Tor Vergata
University of Washington logoUniversity of WashingtonCNRS logoCNRSUniversity of Toronto logoUniversity of TorontoUniversity of MississippiUniversity of CincinnatiCalifornia Institute of Technology logoCalifornia Institute of TechnologyUniversity of Cambridge logoUniversity of CambridgeINFN Sezione di NapoliMonash University logoMonash UniversityNational Central UniversityNational Astronomical Observatory of JapanVanderbilt UniversityUniversity of Notre Dame logoUniversity of Notre DameTel Aviv University logoTel Aviv UniversityUniversity College London logoUniversity College LondonNikhefGeorgia Institute of Technology logoGeorgia Institute of TechnologyUniversity of Science and Technology of China logoUniversity of Science and Technology of ChinaTsinghua University logoTsinghua UniversityThe Chinese University of Hong Kong logoThe Chinese University of Hong KongUniversity of MelbourneThe University of Texas at Austin logoThe University of Texas at AustinUniversity of WarsawPeking University logoPeking UniversityTexas A&M University logoTexas A&M UniversityUniversity of British Columbia logoUniversity of British ColumbiaNorthwestern University logoNorthwestern UniversityNASA Goddard Space Flight Center logoNASA Goddard Space Flight CenterLouisiana State UniversityUniversity of Florida logoUniversity of FloridaINFN Sezione di PisaRutherford Appleton LaboratoryUniversity of Minnesota logoUniversity of MinnesotaUniversity of Maryland logoUniversity of MarylandUniversity of Tokyo logoUniversity of TokyoIndian Institute of ScienceNational Taiwan Normal UniversityThe Pennsylvania State University logoThe Pennsylvania State UniversityRochester Institute of TechnologyGran Sasso Science InstituteSorbonne Université logoSorbonne UniversitéUniversity of Massachusetts AmherstAustralian National University logoAustralian National UniversityUniversity of AucklandCardiff UniversityUniversity of GlasgowLeibniz Universität HannoverUniversity of PortsmouthUniversidade Federal do ABCHigh Energy Accelerator Research Organization (KEK)Indian Institute of Technology MadrasUniversity of StrathclydeUniversità di GenovaUniversity of Alabama in HuntsvilleSyracuse UniversityUniversity of SannioRMIT UniversityInstituto Nacional de Pesquisas EspaciaisUniversità di CamerinoUniversitat de les Illes BalearsMaastricht UniversityUniversity of BirminghamUniversità di TriesteNational Cheng Kung UniversityAix Marseille UniversityKyushu UniversityUniversity of South CarolinaWashington State UniversityUniversity of OregonNational Tsing-Hua UniversityKindai UniversityThe University of Western AustraliaUniversidade de AveiroEötvös Loránd UniversityUniversitat Autònoma de BarcelonaSofia UniversityNicolaus Copernicus Astronomical CenterInstituto de Fisica Teorica UAM/CSICShanghai Astronomical ObservatoryNicolaus Copernicus UniversityINFN, Laboratori Nazionali di FrascatiUniversity of Western OntarioUniversità di Napoli Federico IIUniversity of California, Santa Cruz logoUniversity of California, Santa CruzEmbry-Riddle Aeronautical UniversityUniversity of Hawai’iUniversity of Electro-CommunicationsNational Chung Hsing UniversityMontana State UniversityInternational Centre for Theoretical SciencesINFN Sezione di PerugiaIstituto Nazionale di Alta MatematicaThe University of SheffieldUniversité de la Côte d’AzurPhysikalisch-Technische BundesanstaltInstitut de Física d’Altes Energies (IFAE)INFN - Sezione di PadovaUniversity of the Balearic IslandsLaboratoire Kastler BrosselUniversità di FirenzeUniversity of ToyamaIstituto Nazionale di OtticaINFN-Sezione di GenovaUniversiteit AntwerpenThe University of MississippiUniversity of SzegedUniversità di PerugiaINFN-Sezione di BolognaUniversità di CagliariVU AmsterdamInstitute for Cosmic Ray Research, University of TokyoINFN Sezione di Roma Tor VergataUniversité de Paris, CNRS, Astroparticule et Cosmologie,California State University, Los AngelesUniversità di SienaLIGO Livingston ObservatoryNational Center for High-Performance ComputingNCBJLaboratoire AstroParticule et Cosmologie - CNRSUniversità di Urbino Carlo BoUniversità degli Studi di SassariUniversità di Trento, INFN-TIFPAWigner RCP, RMKIINFN Sezione di CagliariRESCEU, University of TokyoUniv Lyon, ENS de Lyon, CNRS, Université Claude Bernard Lyon 1Universite de Nice, ARTEMIS, CNRS, Observatoire de la Cote d’AzurIstituto de Fısica Teórica, UAM/CSICAlbert-Einstein-Institut, HanoverAPC, AstroParticule et Cosmologie, CNRSGSSI, INFN, Laboratori Nazionali del Gran SassoNational Institute of Technology, Akashi CollegeLAPP, Universit´e Savoie Mont BlancUniversità di NapoliUniversità degli Studi di CamerinoThe University of Sheffield, Department of Physics and AstronomyUniversite de Paris* National and Kapodistrian University of AthensFriedrich-Schiller-Universität JenaUniversit Grenoble AlpesUniversit degli Studi di GenovaUniversit Libre de BruxellesUniversit di TrentoUniversit di SalernoUniversit degli Studi di PadovaUniversit de BordeauxUniversit di Roma La SapienzaUniversit Paris CitUniversit de StrasbourgUniversit de LyonUniversit di PisaINAF Osservatorio Astronomico di PadovaUniversit de MontpellierUniversit di Roma Tor VergataUniversit Di BolognaINAF ` Osservatorio Astronomico di TriesteINFN Sezione di Firenze
The ever-increasing number of detections of gravitational waves (GWs) from compact binaries by the Advanced LIGO and Advanced Virgo detectors allows us to perform ever-more sensitive tests of general relativity (GR) in the dynamical and strong-field regime of gravity. We perform a suite of tests of GR using the compact binary signals observed during the second half of the third observing run of those detectors. We restrict our analysis to the 15 confident signals that have false alarm rates 103yr1\leq 10^{-3}\, {\rm yr}^{-1}. In addition to signals consistent with binary black hole (BH) mergers, the new events include GW200115_042309, a signal consistent with a neutron star--BH merger. We find the residual power, after subtracting the best fit waveform from the data for each event, to be consistent with the detector noise. Additionally, we find all the post-Newtonian deformation coefficients to be consistent with the predictions from GR, with an improvement by a factor of ~2 in the -1PN parameter. We also find that the spin-induced quadrupole moments of the binary BH constituents are consistent with those of Kerr BHs in GR. We find no evidence for dispersion of GWs, non-GR modes of polarization, or post-merger echoes in the events that were analyzed. We update the bound on the mass of the graviton, at 90% credibility, to mg2.42×1023eV/c2m_g \leq 2.42 \times 10^{-23} \mathrm{eV}/c^2. The final mass and final spin as inferred from the pre-merger and post-merger parts of the waveform are consistent with each other. The studies of the properties of the remnant BHs, including deviations of the quasi-normal mode frequencies and damping times, show consistency with the predictions of GR. In addition to considering signals individually, we also combine results from the catalog of GW signals to calculate more precise population constraints. We find no evidence in support of physics beyond GR.
National United UniversityUniversity of Cambridge logoUniversity of CambridgeChinese Academy of Sciences logoChinese Academy of SciencesCarnegie Mellon University logoCarnegie Mellon UniversitySichuan UniversitySun Yat-Sen University logoSun Yat-Sen UniversityKorea UniversityBeihang University logoBeihang UniversityNanjing University logoNanjing UniversityTsinghua University logoTsinghua UniversityNankai UniversityPeking University logoPeking UniversityJoint Institute for Nuclear ResearchSouthwest UniversityStockholm University logoStockholm UniversityUniversity of TurinUppsala UniversityGuangxi Normal UniversityCentral China Normal UniversityShandong University logoShandong UniversityLanzhou UniversityUlm UniversityNorthwest UniversityIndian Institute of Technology MadrasIowa State UniversityUniversity of South ChinaUniversity of Groningen logoUniversity of GroningenWarsaw University of TechnologyGuangxi UniversityShanxi UniversityHenan University of Science and TechnologyHelmholtz-Zentrum Dresden-RossendorfZhengzhou UniversityINFN, Sezione di TorinoCOMSATS University IslamabadHangzhou Institute for Advanced Study, UCASIndian Institute of Technology GuwahatiBudker Institute of Nuclear PhysicsXian Jiaotong UniversityJohannes Gutenberg UniversityINFN, Laboratori Nazionali di FrascatiHenan Normal UniversityNorth China Electric Power UniversityInstitute of high-energy PhysicsJustus Liebig University GiessenInstitute for Nuclear Research of the Russian Academy of SciencesGSI Helmholtzzentrum fur Schwerionenforschung GmbHUniversity of the PunjabHuazhong Normal UniversityThe University of MississippiNikhef, National Institute for Subatomic PhysicsUniversity of Science and Technology LiaoningINFN Sezione di Roma Tor VergataHelmholtz-Institut MainzPontificia Universidad JaverianaIJCLab, Université Paris-Saclay, CNRSSchool of Physics and Technology, Wuhan UniversityInstitut f¨ur Kernphysik, Forschungszentrum J¨ulichINFN-Sezione di FerraraRuhr-University-BochumUniversity of Rome “Tor Vergata ”
Based on 10.64 fb110.64~\mathrm{fb}^{-1} of e+ee^+e^- collision data taken at center-of-mass energies between 4.237 and 4.699 GeV with the BESIII detector, we study the leptonic Ds+D^+_s decays using the e+eDs+Dse^+e^-\to D^{*+}_{s} D^{*-}_{s} process. The branching fractions of Ds++ν(=μ,τ)D_s^+\to\ell^+\nu_{\ell}\,(\ell=\mu,\tau) are measured to be B(Ds+μ+νμ)=(0.547±0.026stat±0.016syst)%\mathcal{B}(D_s^+\to\mu^+\nu_\mu)=(0.547\pm0.026_{\rm stat}\pm0.016_{\rm syst})\% and B(Ds+τ+ντ)=(5.60±0.16stat±0.20syst)%\mathcal{B}(D_s^+\to\tau^+\nu_\tau)=(5.60\pm0.16_{\rm stat}\pm0.20_{\rm syst})\%, respectively. The product of the decay constant and Cabibbo-Kobayashi-Maskawa matrix element Vcs|V_{cs}| is determined to be fDs+Vcs=(246.5±5.9stat±3.6syst±0.5input)μν MeVf_{D_s^+}|V_{cs}|=(246.5\pm5.9_{\rm stat}\pm3.6_{\rm syst}\pm0.5_{\rm input})_{\mu\nu}~\mathrm{MeV} and fDs+Vcs=(252.7±3.6stat±4.5syst±0.6input))τν MeVf_{D_s^+}|V_{cs}|=(252.7\pm3.6_{\rm stat}\pm4.5_{\rm syst}\pm0.6_{\rm input}))_{\tau \nu}~\mathrm{MeV}, respectively. Taking the value of Vcs|V_{cs}| from a global fit in the Standard Model, we obtain fDs+=(252.8±6.0stat±3.7syst±0.6input)μν{f_{D^+_s}}=(252.8\pm6.0_{\rm stat}\pm3.7_{\rm syst}\pm0.6_{\rm input})_{\mu\nu} MeV and fDs+=(259.2±3.6stat±4.5syst±0.6input)τν{f_{D^+_s}}=(259.2\pm3.6_{\rm stat}\pm4.5_{\rm syst}\pm0.6_{\rm input})_{\tau \nu} MeV, respectively. Conversely, taking the value for fDs+f_{D_s^+} from the latest lattice quantum chromodynamics calculation, we obtain Vcs=(0.986±0.023stat±0.014syst±0.003input)μν|V_{cs}| =(0.986\pm0.023_{\rm stat}\pm0.014_{\rm syst}\pm0.003_{\rm input})_{\mu\nu} and Vcs=(1.011±0.014stat±0.018syst±0.003input)τν|V_{cs}| = (1.011\pm0.014_{\rm stat}\pm0.018_{\rm syst}\pm0.003_{\rm input})_{\tau \nu}, respectively.
CNRS logoCNRSUniversity of New South WalesINFN Sezione di NapoliMonash University logoMonash UniversityUniversity of Manchester logoUniversity of ManchesterUniversity of Chicago logoUniversity of ChicagoUniversity of Oxford logoUniversity of Oxfordthe University of Tokyo logothe University of TokyoNagoya University logoNagoya UniversityKyoto University logoKyoto UniversityETH Zürich logoETH ZürichRIKEN logoRIKENUniversidade de LisboaINFN Sezione di PisaUniversity of InnsbruckWeizmann Institute of ScienceUniversité Paris-Saclay logoUniversité Paris-SaclayFriedrich-Alexander-Universität Erlangen-NürnbergSorbonne Université logoSorbonne UniversitéInstitut Polytechnique de ParisMacquarie UniversityCEA logoCEAUniversity of GenevaDublin City UniversityHumboldt-Universität zu BerlinUniversitat de BarcelonaUniversidade Federal do ABCHigh Energy Accelerator Research Organization (KEK)University of LeicesterUniversity of DelawareUniversidad Complutense de MadridNicolaus Copernicus Astronomical Center, Polish Academy of SciencesObservatoire de ParisHiroshima UniversityUniversity of JohannesburgNational Institute of Technology, DurgapurUniversidad Nacional Autónoma de MéxicoJagiellonian UniversityInstituto de Astrofísica de CanariasGran Sasso Science Institute (GSSI)Universidad de ChileUniversidade de São PauloUniversität HamburgRuđer Bošković InstituteWaseda University logoWaseda UniversityUniversity of AdelaideUniversitat Autònoma de BarcelonaCNESINFN, Sezione di TorinoPontificia Universidad Católica de ChileUniversidade Federal de Santa CatarinaTechnische Universität DortmundPSL Research UniversityUniversidad de La LagunaUniversity of Hawaii at ManoaJosip Juraj Strossmayer University of OsijekUniversità degli Studi di SienaMax-Planck-Institut für PhysikINAF – Istituto di Astrofisica Spaziale e Fisica Cosmica MilanoLaboratoire d’Astrophysique de MarseilleINFN Sezione di PerugiaINAF-Istituto di RadioastronomiaInstituto de Astrofísica de Andalucía, IAA-CSICINAF – Osservatorio Astronomico di RomaWestern Sydney UniversityLAPPFZU - Institute of Physics of the Czech Academy of SciencesINFN - Sezione di PadovaKumamoto UniversityIJCLabNational Academy of Sciences of UkraineUniversity of DurhamINAF- Osservatorio Astronomico di CagliariUniversity of NamibiaKing Mongkut’s Institute of Technology LadkrabangUniversidad de GuadalajaraUniversidade Presbiteriana MackenzieLaboratoire Univers et Particules de MontpellierLaboratoire Leprince-RinguetPalacký UniversityCentro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT)INFN, Sezione di CataniaINFN Sezione di RomaLPNHEYerevan Physics InstituteINFN Sezione di Roma Tor VergataAIMIFAEKavli Institute for the Physics and Mathematics of the Universe (WPI),Universidad Metropolitana de Ciencias de la EducaciónUniversità degli Studi di Bari Aldo MoroInstitut de Ciències del Cosmos (ICCUB)Centro Brasileiro de Pesquisas Físicas - CBPFAstroparticule et Cosmologie (APC)Open University of IsraelAstronomical Institute, Czech Academy of SciencesInstituto de Física de Partículas y del Cosmos IPARCOSInstituto de Física de São CarlosIEEC-UBLaboratoire APCINFN (Sezione di Bari)University of WitswatersrandCentre d'Etudes Nucléaires de Bordeaux GradignanINFN Sezione di UdineMPI für Kernphysik* North–West UniversityINFN-Sezione di Roma TreUniversit de ParisINAF Osservatorio Astronomico di CapodimonteMax Planck Institut fr AstronomieAix-Marseille Universit",Universit de BordeauxUniversit Savoie Mont BlancUniversit Paris CitINAF Osservatorio Astrofisico di ArcetriUniversit de MontpellierUniversit degli Studi di TorinoTechnion Israel Institute of Technologycole Polytechnique
Galaxy clusters are expected to be dark matter (DM) reservoirs and storage rooms for the cosmic-ray protons (CRp) that accumulate along the cluster's formation history. Accordingly, they are excellent targets to search for signals of DM annihilation and decay at gamma-ray energies and are predicted to be sources of large-scale gamma-ray emission due to hadronic interactions in the intracluster medium. We estimate the sensitivity of the Cherenkov Telescope Array (CTA) to detect diffuse gamma-ray emission from the Perseus galaxy cluster. We perform a detailed spatial and spectral modelling of the expected signal for the DM and the CRp components. For each, we compute the expected CTA sensitivity. The observing strategy of Perseus is also discussed. In the absence of a diffuse signal (non-detection), CTA should constrain the CRp to thermal energy ratio within the radius R500R_{500} down to about $X_{500}<3\times 10^{-3}$, for a spatial CRp distribution that follows the thermal gas and a CRp spectral index αCRp=2.3\alpha_{\rm CRp}=2.3. Under the optimistic assumption of a pure hadronic origin of the Perseus radio mini-halo and depending on the assumed magnetic field profile, CTA should measure αCRp\alpha_{\rm CRp} down to about ΔαCRp0.1\Delta\alpha_{\rm CRp}\simeq 0.1 and the CRp spatial distribution with 10% precision. Regarding DM, CTA should improve the current ground-based gamma-ray DM limits from clusters observations on the velocity-averaged annihilation cross-section by a factor of up to 5\sim 5, depending on the modelling of DM halo substructure. In the case of decay of DM particles, CTA will explore a new region of the parameter space, reaching models with \tau_{\chi}&gt;10^{27}s for DM masses above 1 TeV. These constraints will provide unprecedented sensitivity to the physics of both CRp acceleration and transport at cluster scale and to TeV DM particle models, especially in the decay scenario.
The NA62 experiment at the CERN SPS reports a study of a sample of 4×1094 \times10^{9} tagged π0\pi^0 mesons from K+π+π0(γ)K^+ \to \pi^+ \pi^0 (\gamma), searching for the decay of the π0\pi^0 to invisible particles. No signal is observed in excess of the expected background fluctuations. An upper limit of 4.4×1094.4 \times10^{-9} is set on the branching ratio at 90% confidence level, improving on previous results by a factor of 60. This result can also be interpreted as a model-independent upper limit on the branching ratio for the decay K+π+XK^+ \to \pi^+ X, where XX is a particle escaping detection with mass in the range 0.110-0.155 GeV/c2/c^2 and rest lifetime greater than 100 ps. Model-dependent upper limits are obtained assuming XX to be an axion-like particle with dominant fermion couplings or a dark scalar mixing with the Standard Model Higgs boson.
University of Toronto logoUniversity of TorontoUniversity of Amsterdam logoUniversity of AmsterdamCalifornia Institute of Technology logoCalifornia Institute of TechnologyUniversity of Illinois at Urbana-Champaign logoUniversity of Illinois at Urbana-ChampaignUniversity of OsloUniversity of Cambridge logoUniversity of CambridgeUniversity of ZurichUniversity of Southern California logoUniversity of Southern CaliforniaUniversity of Chicago logoUniversity of ChicagoTel Aviv University logoTel Aviv UniversityUniversity College London logoUniversity College LondonUniversity of Oxford logoUniversity of OxfordUniversity of California, Irvine logoUniversity of California, IrvineUniversity of Copenhagen logoUniversity of CopenhagenUniversity of EdinburghUniversity of British Columbia logoUniversity of British ColumbiaUniversity of CreteKavli Institute for the Physics and Mathematics of the UniverseUniversity of Florida logoUniversity of FloridaINFN Sezione di PisaSpace Telescope Science Institute logoSpace Telescope Science InstituteInstitute for Advanced StudyUniversité Paris-Saclay logoUniversité Paris-SaclayHelsinki Institute of PhysicsStockholm University logoStockholm UniversityUniversity of HelsinkiThe University of ManchesterUniversité de GenèveAalto University logoAalto UniversityQueen Mary University of London logoQueen Mary University of LondonUniversity of PortsmouthMax Planck Institute for AstrophysicsUniversity of IcelandUniversity of NaplesUniversiteit LeidenUniversity of SussexDurham University logoDurham UniversityNiels Bohr InstituteUniversity of JyväskyläUniversity of PadovaInstituto de Astrofísica de CanariasUniversity of the WitwatersrandUniversity of NottinghamEuropean Space AgencyUniversity of Cape TownUniversity of LisbonINFN, Sezione di TorinoPontificia Universidad Católica de ChileDublin Institute for Advanced StudiesJodrell Bank Centre for AstrophysicsINFN, Laboratori Nazionali di FrascatiUniversity of the Basque CountryUniversity of Hawai’iINFN, Sezione di MilanoUniversity of KwaZulu-NatalLudwig-Maximilians-UniversitätInstituto de Astrofísica de Andalucía-CSICUniversity of the Western CapeINAF – Istituto di Astrofisica Spaziale e Fisica Cosmica MilanoLaboratoire d’Astrophysique de MarseilleKavli IPMU (WPI), UTIAS, The University of TokyoMax-Planck Institut für extraterrestrische PhysikINAF-Istituto di RadioastronomiaINAF - Osservatorio di Astrofisica e Scienza dello SpazioLebanese UniversityCambridge UniversityUniversité de MarseilleINFN - Sezione di PadovaINAF-IASF MilanoCosmic Dawn CenterINFN-Sezione di BolognaINFN Sezione di RomaINAF-Osservatorio Astronomico di BolognaINFN Sezione di Roma Tor VergataNational Astronomical Observatories of ChinaSISSA - Scuola Internazionale Superiore di Studi AvanzatiUniversité de LausanneCEA Paris-SaclayUniversity of Oslo, Institute of Theoretical AstrophysicsParis SaclayNational Institute for Physics and Nuclear EngineeringExeter UniversityUniversity of Helsinki, Department of PhysicsUniversité Paris-Saclay, CNRSUniversité de Genève, Département d’AstronomieParis Institute of AstrophysicsAPC, UMR 7164, Université Paris Cité, CNRSInstitute for Advanced Study, Einstein DriveUniversité de Paris, CNRS, Astroparticule et Cosmologie, F-75013 Paris, FranceINAF - Istituto di Radioastronomia, Istituto Nazionale di AstrofisicaINAF - Osservatorio di Astrofisica e Scienza dello Spazio, Istituto Nazionale di AstrofisicaINAF - Osservatorio di Astrofisica e Scienza dello Spazio di Bologna, Istituto Nazionale di AstrofisicaUniversity of Helsinki, Department of Physics, and Helsinki Institute of PhysicsINFN-Sezione di Roma TreINFN-Sezione di FerraraUniversit de ParisUniversit Claude Bernard Lyon 1INAF Osservatorio Astronomico di CapodimonteUniversit Lyon 1Instituto de Física Teórica, (UAM/CSIC)RWTH Aachen UniversityINAF Osservatorio Astrofisico di ArcetriUniversit degli Studi di MilanoINAF Osservatorio Astronomico di PadovaUniversit de MontpellierINAF Osservatorio di Astrofisica e Scienza dello Spazio di BolognaUniversit Di BolognaUniversit de Grenoble-AlpesINFN Sezione di TriesteINAF ` Osservatorio Astronomico di TriesteINFN Sezione di FirenzeNorwegian University of Science and TechnologyINAF Osservatorio Astronomico di BreraUniversity of Milano Bicocca
The Euclid mission of the European Space Agency will deliver weak gravitational lensing and galaxy clustering surveys that can be used to constrain the standard cosmological model and extensions thereof. We present forecasts from the combination of these surveys on the sensitivity to cosmological parameters including the summed neutrino mass MνM_\nu and the effective number of relativistic species NeffN_{\rm eff} in the standard Λ\LambdaCDM scenario and in a scenario with dynamical dark energy ($w_0 w_a$CDM). We compare the accuracy of different algorithms predicting the nonlinear matter power spectrum for such models. We then validate several pipelines for Fisher matrix and MCMC forecasts, using different theory codes, algorithms for numerical derivatives, and assumptions concerning the non-linear cut-off scale. The Euclid primary probes alone will reach a sensitivity of σ(Mν)=\sigma(M_\nu)=56meV in the Λ\LambdaCDM+MνM_\nu model, whereas the combination with CMB data from Planck is expected to achieve σ(Mν)=\sigma(M_\nu)=23meV and raise the evidence for a non-zero neutrino mass to at least the 2.6σ2.6\sigma level. This can be pushed to a 4σ4\sigma detection if future CMB data from LiteBIRD and CMB Stage-IV are included. In combination with Planck, Euclid will also deliver tight constraints on $\Delta N_{\rm eff}< 0.144(95 (95%CL) in the \LambdaCDM+CDM+M_\nu++N_{\rm eff}model,or model, or \Delta N_{\rm eff}< 0.063whenfutureCMBdataareincluded.Whenfloating when future CMB data are included. When floating (w_0, w_a),wefindthatthesensitivityto, we find that the sensitivity to N_{\rm eff}$ remains stable, while that to MνM_\nu degrades at most by a factor 2. This work illustrates the complementarity between the Euclid spectroscopic and imaging/photometric surveys and between Euclid and CMB constraints. Euclid will have a great potential for measuring the neutrino mass and excluding well-motivated scenarios with additional relativistic particles.
In this article, an introduction to the nonlinear equations for completely symmetric bosonic higher spin gauge fields in anti de Sitter space of any dimension is provided. To make the presentation self-contained we explain in detail some related issues such as the MacDowell-Mansouri-Stelle-West formulation of gravity, unfolded formulation of dynamical systems in terms of free differential algebras and Young tableaux symmetry properties in terms of Howe dual algebras.
The NA62 experiment reports the branching ratio measurement BR$(K^+ \rightarrow \pi^+ \nu\bar{\nu}) = (10.6^{+4.0}_{-3.4} |_{\rm stat} \pm 0.9_{\rm syst}) \times 10 ^{-11}$ at 68% CL, based on the observation of 20 signal candidates with an expected background of 7.0 events from the total data sample collected at the CERN SPS during 2016-2018. This provides evidence for the very rare K+π+ννˉK^+ \rightarrow \pi^+ \nu\bar{\nu} decay, observed with a significance of 3.4σ\sigma. The experiment achieves a single event sensitivity of (0.839±0.054)×1011(0.839\pm 0.054)\times 10^{-11}, corresponding to 10.0 events assuming the Standard Model branching ratio of (8.4±1.0)×1011(8.4\pm1.0)\times10^{-11}. This measurement is also used to set limits on BR(K+π+XK^+ \to \pi^+ X), where XX is a scalar or pseudo-scalar particle. Details are given of the analysis of the 2018 data sample, which corresponds to about 80% of the total data sample.
Exclusive photoproduction of K+ΛK^+ \Lambda final states off a proton target has been an important component in the search for missing nucleon resonances and our understanding of the production of final states containing strange quarks. Polarization observables have been instrumental in this effort. The current work is an extension of previously published CLAS results on the beam-recoil transferred polarization observables CxC_x and CzC_z. We extend the kinematic range up to invariant mass W=3.33W=3.33~GeV from the previous limit of W=2.5W=2.5~GeV with significantly improved statistical precision in the region of overlap. These data will provide for tighter constraints on the reaction models used to unravel the spectrum of nucleon resonances and their properties by not only improving the statistical precision of the data within the resonance region, but also by constraining tt-channel processes that dominate at higher WW but extend into the resonance region.
CNRS logoCNRSINFN Sezione di NapoliNagoya University logoNagoya UniversityRIKEN logoRIKENINFN Sezione di PisaThe University of Hong Kong logoThe University of Hong KongUniversity of Tokyo logoUniversity of TokyoUniversité Paris-Saclay logoUniversité Paris-SaclayUniversité de GenèveCEA logoCEAHumboldt-Universität zu BerlinUniversitat de BarcelonaS. N. Bose National Centre for Basic SciencesUniversität WürzburgUniversidad Complutense de MadridUniversità di GenovaTokai UniversityHiroshima UniversityInstituto de Astrofísica de CanariasINFN, Laboratori Nazionali del Gran SassoInstitute of Physics of the Czech Academy of SciencesUniversität HamburgYukawa Institute for Theoretical Physics, Kyoto UniversityRuhr-Universität BochumUniversitat Autònoma de BarcelonaINFN, Sezione di TorinoNicolaus Copernicus Astronomical CenterUniversity of RijekaTechnische Universität DortmundUniversidad de La LagunaJosip Juraj Strossmayer University of OsijekGifu UniversityKonan UniversityInstituto de Astrofísica de Andalucía-CSICKanagawa UniversityMax-Planck-Institut für PhysikYamagata UniversityINAF – Osservatorio Astronomico di RomaGrenoble-INPInstitut de Física d’Altes Energies (IFAE)UGAUniv Grenoble AlpesUniversidad de CádizINFN - Sezione di PadovaUniversity of SplitNational Institutes for Quantum Science and TechnologyUniv. Savoie Mont BlancUniversità di PalermoUniversität des SaarlandesINFN-Sezione di GenovaUniversità di UdineIRAPCentro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT)IPARCOSPalacky UniversityINFN, Sezione di CataniaINFN Sezione di RomaUniversidad de HuelvaINFN Sezione di Roma Tor VergataKogakuin UniversityKavli Institute for the Physics and Mathematics of the Universe (WPI),Università di SienaINAF, Istituto di Astrofisica Spaziale e Fisica Cosmica di BolognaInstitute for Nuclear Research and Nuclear Energy, Bulgarian Academy of SciencesInstitut de Ciències del Cosmos (ICCUB)LPSC-IN2P3Universitat de LleidaKEK Theory Center, High Energy Accelerator Research OrganizationAstronomical Institute, Czech Academy of SciencesINAF Istituto di Astrofisica Spaziale e Fisica Cosmica di RomaLAPP-AnnecyINFN (Sezione di Bari)Institute of Space Sciences, IEEC-CSICInstituto de Investigaciones Multidisciplinares en Ciencia y Tecnología (IMCyT)Instituto de Física, Universidade Federal da BahiaDipartimento Interateneo di Fisica ‘M. Merlin’College of Industrial Technology, Nihon UniversityUniversit di Roma La SapienzaUniversit Paris CitUniversit di PadovaUniversit Di BolognaINFN Sezione di TriesteINAF Osservatorio Astronomico di Brera
Cherenkov Telescope Array Observatory (CTAO) is the next-generation ground-based gamma-ray observatory operating in the energy range from 20 GeV up to 300 TeV, with two sites in La Palma (Spain) and Paranal (Chile). It will consist of telescopes of three sizes, covering different parts of the large energy range. We report on the performance of Large-Sized Telescope prototype (LST-1) in the detection and characterization of extragalactic gamma-ray sources, with a focus on the reconstructed gamma-ray spectra and variability of classical bright BL Lacertae objects, which were observed during the early commissioning phase of the instrument. LST-1 data from known bright gamma-ray blazars - Markarian 421, Markarian 501, 1ES 1959+650, 1ES 0647+250, and PG 1553+113 - were collected between July 10, 2020, and May 23, 2022, covering a zenith angle range of 4 deg to 57 deg. The reconstructed light curves were analyzed using a Bayesian block algorithm to distinguish the different activity phases of each blazar. Simultaneous Fermi-LAT data were utilized to reconstruct the broadband γ\gamma-ray spectra for the sources during each activity phase. High-level reconstructed data in a format compatible with gammapy are provided together with measured light curves and spectral energy distributions (SEDs) for several bright blazars and an interpretation of the observed variability in long and short timescales. Simulations of historical flares are generated to evaluate the sensitivity of LST-1. This work represents the first milestone in monitoring bright BL Lacertae objects with a CTAO telescope.
University of Washington logoUniversity of WashingtonTohoku University logoTohoku UniversityUniversity of MississippiCalifornia Institute of Technology logoCalifornia Institute of TechnologyUniversity of Cambridge logoUniversity of CambridgeINFN Sezione di NapoliMonash University logoMonash UniversityUCLA logoUCLANikhefUniversity of Science and Technology of China logoUniversity of Science and Technology of ChinaKyoto University logoKyoto UniversityUniversity of Michigan logoUniversity of MichiganThe Chinese University of Hong Kong logoThe Chinese University of Hong KongUniversity of MelbourneThe University of Texas at Austin logoThe University of Texas at AustinUniversity of WarsawTexas A&M University logoTexas A&M UniversityUniversity of British Columbia logoUniversity of British ColumbiaTata Institute of Fundamental ResearchOkayama UniversityUniversity of Florida logoUniversity of FloridaUniversity of Technology SydneyUniversity of Minnesota logoUniversity of MinnesotaUniversity of Maryland logoUniversity of MarylandUniversity of Tokyo logoUniversity of TokyoThe Pennsylvania State University logoThe Pennsylvania State UniversityUniversité Paris-Saclay logoUniversité Paris-SaclayGran Sasso Science InstitutePerimeter Institute for Theoretical Physics logoPerimeter Institute for Theoretical PhysicsUniversity of ZagrebSorbonne Université logoSorbonne UniversitéUniversity of Massachusetts AmherstCharles Sturt UniversitySapienza University of RomeAustralian National University logoAustralian National UniversityUniversity of Western AustraliaUniversity of GenevaCardiff UniversityUniversity of GlasgowLeibniz Universität HannoverUniversity of PortsmouthConsejo Superior de Investigaciones CientíficasWigner Research Centre for PhysicsSyracuse UniversityRMIT UniversityInstituto Nacional de Pesquisas EspaciaisUniversità di CamerinoUniversity of BirminghamUniversity of HyogoNiels Bohr InstituteBrandeis UniversityUniversity of the WitwatersrandUniversity of OregonNational Tsing-Hua UniversityPolish Academy of SciencesEötvös Loránd UniversityMissouri University of Science and TechnologyUniversity of Nizhny NovgorodNicolaus Copernicus Astronomical CenterThe University of Alabama in HuntsvilleUniversità di Napoli Federico IIUniversity of Hawai’iUniversity of SharjahAuburn UniversityInter-University Centre for Astronomy and AstrophysicsMontana State UniversityInternational Centre for Theoretical SciencesThe University of SheffieldUniversidade de Santiago de CompostelaINFN - Sezione di PadovaUniversity of ToyamaINFN-Sezione di GenovaUniversità di UdineUniversità di PerugiaINFN Sezione di RomaRheinisch-Westfälische Technische Hochschule AachenINFN Sezione di Roma Tor VergataUniversité de Bretagne OccidentaleLIGO Hanford ObservatoryUniversity of Urbino Carlo BoThe University of Texas Rio Grande ValleyUniversità di SienaLIGO Livingston ObservatoryNational Center for High-Performance ComputingAlbert Einstein InstituteARTEMIS, Observatoire de la Côte d’AzurUniversity of BrusselsLIGO IndiaUniversity of Sannio at BeneventoResonac Holdings CorporationUniversity of Pecs* National and Kapodistrian University of AthensUniversit de ParisUniversit catholique de LouvainUniversit Grenoble AlpesUniversit degli Studi di GenovaUniversit Libre de BruxellesUniversit di TrentoUniversit Paris CitUniversit de StrasbourgUniversit de LyonUniversit di PisaUniversit di PadovaUniversity of Rome “Tor Vergata ”Universit Politecnica delle MarcheINFN–TIFPAUniversit di Roma Tor VergataINFN Sezione di TriesteMax Planck Institute for Gravitational PhysicsINFN Sezione di FirenzeVrije Universiteit Brussel
Despite the growing number of confident binary black hole coalescences observed through gravitational waves so far, the astrophysical origin of these binaries remains uncertain. Orbital eccentricity is one of the clearest tracers of binary formation channels. Identifying binary eccentricity, however, remains challenging due to the limited availability of gravitational waveforms that include effects of eccentricity. Here, we present observational results for a waveform-independent search sensitive to eccentric black hole coalescences, covering the third observing run (O3) of the LIGO and Virgo detectors. We identified no new high-significance candidates beyond those that were already identified with searches focusing on quasi-circular binaries. We determine the sensitivity of our search to high-mass (total mass M&gt;70 MM_\odot) binaries covering eccentricities up to 0.3 at 15 Hz orbital frequency, and use this to compare model predictions to search results. Assuming all detections are indeed quasi-circular, for our fiducial population model, we place an upper limit for the merger rate density of high-mass binaries with eccentricities 0 &lt; e \leq 0.3 at 0.330.33 Gpc3^{-3} yr1^{-1} at 90\% confidence level.
A search for the K+π+XK^{+}\rightarrow\pi^{+}X decay, where XX is a long-lived feebly interacting particle, is performed through an interpretation of the K+π+ννˉK^{+}\rightarrow\pi^{+}\nu\bar{\nu} analysis of data collected in 2017 by the NA62 experiment at CERN. Two ranges of XX masses, 00-110MeV/c2110\,\text{MeV}/c^{2} and 154154-260MeV/c2260\,\text{MeV}/c^{2}, and lifetimes above 100ps100\,\text{ps} are considered. The limits set on the branching ratio, BR(K+π+X)\text{BR}(K^{+}\rightarrow\pi^{+}X), are competitive with previously reported searches in the first mass range, and improve on current limits in the second mass range by more than an order of magnitude.
The kaon physics programme, long heralded as a cutting-edge frontier by the European Strategy for Particle Physics, continues to stand at the intersection of discovery and innovation in high-energy physics (HEP). With its unparalleled capacity to explore new physics at the multi-TeV scale, kaon research is poised to unveil phenomena that could reshape our understanding of the Universe. This document highlights the compelling physics case, with emphasis on exciting new opportunities for advancing kaon physics not only in Europe but also on a global stage. As an important player in the future of HEP, the kaon programme promises to drive transformative breakthroughs, inviting exploration at the forefront of scientific discovery.
CNRS logoCNRSMichigan State University logoMichigan State UniversityINFN Sezione di NapoliSLAC National Accelerator LaboratoryUniversity of UtahChinese Academy of Sciences logoChinese Academy of SciencesDESYNanjing University logoNanjing UniversityUniversity of WarsawPennsylvania State UniversityCONICETUniversidade de LisboaUniversity of Maryland logoUniversity of MarylandUniversity of Wisconsin-Madison logoUniversity of Wisconsin-MadisonLos Alamos National LaboratoryFriedrich-Alexander-Universität Erlangen-NürnbergUniversity of ZagrebUniversity of RochesterCEA logoCEAShandong University logoShandong UniversityInstitut Universitaire de FranceChung-Ang UniversityYunnan UniversityInstitute for Basic ScienceUniversidade Estadual de CampinasUniversidade Federal do ABCUniversidade Federal do Rio Grande do SulUniversity of LeicesterUniversidad Nacional de La PlataDurham University logoDurham UniversityUniversidad de Santiago de ChileCentro Brasileiro de Pesquisas FísicasUniversidad Nacional Autónoma de MéxicoMichigan Technological UniversityInstitute of Physics of the Czech Academy of SciencesUniversidade de São PauloUniversity of AlabamaUniversidad de TalcaRuhr-Universität BochumLaboratoire d’Astrophysique de BordeauxINFN, Sezione di TorinoPontificia Universidad Católica de ChileUniversidad de ValparaísoUniversidade Federal de Santa CatarinaPontificia Universidad Católica de ValparaísoWashington UniversityINFN, Laboratori Nazionali di FrascatiUniversità di Napoli Federico IIINFN, Sezione di MilanoUniversidad Adolfo IbáñezUniversidad Michoacana de San Nicolás de HidalgoUniversidade Federal de São PauloINFN - Sezione di PadovaMax-Planck-Institut für KernphysikUniversitá degli Studi dell’InsubriaUniversidad Andres BelloInstituto Politécnico NacionalUniversidade Federal de ItajubáINFN-Sezione di GenovaUniversidad de GuanajuatoUniversiteit AntwerpenUniversidad MayorHubei Normal UniversityINAF/IAPSUniversidade Federal de Juiz de ForaINFN Sezione di Roma Tor VergataUniversidad Tecnológica NacionalUniversidad Autónoma de ChiapasOsservatorio Astrofisico di TorinoUniversidad Autónoma de CoahuilaInstituto Politécnico de SetúbalUniversidad Nacional de IngenieríaInstituto de Física La Plata (IFLP)Universidad Tecnológica MetropolitanaUniversidad Peruana Cayetano HerediaLIP - Laboratório de Instrumentação e Física Experimental de PartículasInstituto Federal de Educação, Ciência e Tecnologia do Rio de JaneiroINFN, CNAFYunnan Astronomical Observatory, Chinese Academy of SciencesINFN (Sezione di Bari)Instituto Argentino de Radioastronomía (IAR)Universidad de la Sierra JuárezUniversit di SalernoUniversit Paris CitRWTH Aachen UniversityUniversit di PadovaUniversit degli Studi di MilanoUniversit degli Studi di TorinoUniversit di Roma Tor VergataUniversit degli Studi di Trieste
Ground-based gamma-ray astronomy is now well established as a key observational approach to address critical topics at the frontiers of astroparticle physics and high-energy astrophysics. Whilst the field of TeV astronomy was once dominated by arrays of atmospheric Cherenkov Telescopes, ground-level particle detection has now been demonstrated to be an equally viable and strongly complementary approach. Ground-level particle detection provides continuous monitoring of the overhead sky, critical for the mapping of extended structures and capturing transient phenomena. As demonstrated by HAWC and LHAASO, the technique provides the best available sensitivity above a few tens of TeV, and for the first time access to the PeV energy range. Despite the success of this approach, there is so far no major ground-level particle-based observatory with access to the Southern sky. HESS, located in Namibia, is the only major gamma-ray instrument in the Southern Hemisphere, and has shown the extraordinary richness of the inner galaxy in the TeV band, but is limited in terms of field of view and energy reach. SWGO is an international effort to construct the first wide-field instrument in the south with deep sensitivity from 100s of GeV into the PeV domain. The project is now close to the end of its development phase and planning for construction of the array in Chile has begun. Here we describe the baseline design, expected sensitivity and resolution, and describe in detail the main scientific topics that will be addressed by this new facility and its initial phase SWGO-A. We show that SWGO will have a transformational impact on a wide range of topics from cosmic-ray acceleration and transport to the nature of dark matter. SWGO represents a key piece of infrastructure for multi-messenger astronomy in the next decade, with strong scientific synergies with the nearby CTA Observatory.
We present some generalities of unfolded on-shell dynamics that are useful in analysing the BMV conjecture for mixed-symmetry fields in constantly curved backgrounds. In particular we classify the Lorentz-covariant Harish-Chandra modules generated from primary Weyl tensors of arbitrary mass and shape, and in backgrounds with general values of the cosmological constant. We also discuss the unfolded notion of local degrees of freedom in theories with and without gravity and with and without massive deformation parameters, using the language of Weyl zero-form modules and their duals.
We perform a study of the X(3872)X(3872) lineshape using the data samples of e+eγX(3872)e^+e^-\to\gamma X(3872), X(3872)D0Dˉ0π0X(3872)\to D^0\bar{D}^0 \pi^0 and π+πJ/ψ\pi^+\pi^- J/\psi collected with the BESIII detector. The effects of the coupled-channels and the off-shell D0D^{*0} are included in the parameterization of the lineshape. The lineshape mass parameter is obtained to be MX=(3871.63±0.130.05+0.06)M_{X}=(3871.63\pm 0.13^{+0.06}_{-0.05}) MeV. Two poles are found on the first and second Riemann sheets corresponding to the D0Dˉ0D^{*0}\bar{D}^0 branch cut. The pole location on the first sheet is much closer to the D0Dˉ0D^{*0}\bar{D}^0 threshold than the other, and is determined to be 7.04±0.150.08+0.077.04\pm0.15^{+0.07}_{-0.08} MeV above the D0Dˉ0π0D^0\bar{D}^0\pi^0 threshold with an imaginary part 0.19±0.080.19+0.14-0.19\pm0.08^{+0.14}_{-0.19} MeV.
The accurate identification of heavy-flavour jets, those which originate from bottom or charm quarks, is crucial for precision studies of the Standard Model and searches for new physics. However, assigning flavour to jets presents significant challenges, primarily due to issues with infrared and collinear (IRC) safety. This paper aims to address these challenges by evaluating recently-proposed jet algorithms designed to be IRC-safe and applicable in high-precision measurements. We compare these algorithms across benchmark heavy-flavour production processes and kinematic regimes that are relevant for LHC phenomenology. Exploiting both fixed-order calculations in QCD as well as parton shower simulations, we analyse the infrared sensitivity of these new algorithms at different stages of the event evolution and compare to flavour-labelling strategies currently adopted by LHC collaborations. The results highlight that, while all algorithms lead to more robust flavour-assignments compared to current techniques, they vary in performance depending on the observable and energy regime. The study lays groundwork for robust, flavour-aware jet analyses in current and future collider experiments to maximise the physics potential of experimental data by reducing discrepancies between theoretical and experimental methods.
Hidden theories coupled to the SM may provide emergent axions, that are composites/bound-states of the hidden fields. This is motivated by paradigms emerging from the AdS/CFT correspondence but it is a more general phenomenon. We explore the general setup and find that UV-sourced interactions of instanton densities give rise to emergent axions in the IR. We study the general properties of such axions and argue that they are generically different from both fundamental and composite axions that have been studied so far.
University of Washington logoUniversity of WashingtonCNRS logoCNRSCalifornia Institute of Technology logoCalifornia Institute of TechnologyUniversity of Cambridge logoUniversity of CambridgeINFN Sezione di NapoliMonash University logoMonash UniversityNational Central UniversityNational Astronomical Observatory of JapanGhent UniversityNikhefGeorgia Institute of Technology logoGeorgia Institute of TechnologyTsinghua University logoTsinghua UniversityStanford University logoStanford UniversityThe Chinese University of Hong Kong logoThe Chinese University of Hong KongUniversity of MelbourneUniversity of WarsawNASA Goddard Space Flight Center logoNASA Goddard Space Flight CenterInternational Centre for Theoretical Sciences, Tata Institute of Fundamental ResearchUniversity of Florida logoUniversity of FloridaINFN Sezione di PisaUniversity of Southampton logoUniversity of SouthamptonUniversity of Minnesota logoUniversity of MinnesotaUniversity of Maryland logoUniversity of MarylandCollège de FranceThe University of Hong Kong logoThe University of Hong KongUniversity of Tokyo logoUniversity of TokyoNational Taiwan Normal UniversityUniversité Paris-Saclay logoUniversité Paris-SaclayChennai Mathematical InstituteIndian Institute of Technology, BombayUniversiteit GentSorbonne Université logoSorbonne UniversitéCharles Sturt UniversityAustralian National University logoAustralian National UniversityMIT logoMITUniversity of GlasgowUniversity of PotsdamLeibniz Universität HannoverFriedrich-Schiller-Universität JenaIndian Institute of Technology MadrasUniversity of StrathclydeWigner Research Centre for PhysicsSyracuse UniversityNicolaus Copernicus Astronomical Center, Polish Academy of SciencesInstituto Nacional de Pesquisas EspaciaisUniversitat de ValènciaUniversità di CamerinoUniversitat de les Illes BalearsUniversité de LiègeLomonosov Moscow State UniversityUniversité Côte d’AzurUniversità di TriesteCalifornia State University, Long BeachGran Sasso Science Institute (GSSI)University of OregonSwinburne University of TechnologyCalifornia State University, FullertonNational Tsing-Hua UniversityThe University of Western AustraliaEötvös Loránd UniversityBar Ilan UniversityIndian Institute of Technology GandhinagarMax Planck Institute for Gravitational Physics (Albert Einstein Institute)INFN, Sezione di TorinoUniversidad de La LagunaIndian Institute of Technology HyderabadUniversità di Napoli Federico IIEmbry-Riddle Aeronautical UniversityObservatoire de la Côte d’AzurAichi University of EducationInter-University Centre for Astronomy and AstrophysicsIndian Institute of Technology IndoreMontana State UniversityINFN Sezione di PerugiaCNRS/IN2P3National Institute of Advanced Industrial Science and Technology (AIST)INFN - Sezione di PadovaIJCLabUniv. Savoie Mont BlancLaboratoire Kastler BrosselUniversità degli Studi di Urbino ’Carlo Bo’Université de RennesUniversità di PalermoENS-PSL Research UniversityINFN-Sezione di GenovaUniversidad de GuadalajaraUniversiteit AntwerpenThe University of MississippiINFN Sezione di RomaIndian Institute of Technology PalakkadFukuoka UniversityKorea Institute of Science and Technology InformationINFN Sezione di Roma Tor VergataLIGO Hanford ObservatoryINFN Laboratori Nazionali del SudVU University AmsterdamNational Institute for Mathematical SciencesLaboratoire de Physique Subatomique et de CosmologieUniversità degli Studi di SassariEuropean Gravitational Observatory (EGO)Instituto de Física Teórica (IFT)Laboratoire d’Annecy de Physique des Particules (LAPP)Academia Sinica, Institute of PhysicsInstitut FOTON - UMR 6082UAM/CSICCentre de Calcul de l’Institut National de Physique Nucléaire et de Physique des Particules (IN2P3)* National and Kapodistrian University of AthensUniversit catholique de LouvainUniversit Grenoble AlpesUniversit degli Studi di GenovaUniversit degli Studi di PerugiaUniversit di TrentoUniversit di SalernoUniversit di Roma La SapienzaUniversit Paris CitUniversit di PisaUniversit di PadovaUniversit degli Studi di Milano-BicoccaUniversit degli Studi di TorinoUniversit di Roma Tor VergataINFN Sezione di TriesteUniversity of Wisconsin ","Milwaukee
We describe a search for gravitational waves from compact binaries with at least one component with mass 0.2 MM_\odot -- 1.0M1.0 M_\odot and mass ratio $q \geq 0.1$ in Advanced LIGO and Advanced Virgo data collected between 1 November 2019, 15:00 UTC and 27 March 2020, 17:00 UTC. No signals were detected. The most significant candidate has a false alarm rate of 0.2 yr1\mathrm{yr}^{-1}. We estimate the sensitivity of our search over the entirety of Advanced LIGO's and Advanced Virgo's third observing run, and present the most stringent limits to date on the merger rate of binary black holes with at least one subsolar-mass component. We use the upper limits to constrain two fiducial scenarios that could produce subsolar-mass black holes: primordial black holes (PBH) and a model of dissipative dark matter. The PBH model uses recent prescriptions for the merger rate of PBH binaries that include a rate suppression factor to effectively account for PBH early binary disruptions. If the PBHs are monochromatically distributed, we can exclude a dark matter fraction in PBHs fPBH0.6f_\mathrm{PBH} \gtrsim 0.6 (at 90% confidence) in the probed subsolar-mass range. However, if we allow for broad PBH mass distributions we are unable to rule out fPBH=1f_\mathrm{PBH} = 1. For the dissipative model, where the dark matter has chemistry that allows a small fraction to cool and collapse into black holes, we find an upper bound f_{\mathrm{DBH}} &lt; 10^{-5} on the fraction of atomic dark matter collapsed into black holes.
By analyzing 2.93 fb1^{-1} data collected at the center-of-mass energy s=3.773\sqrt s=3.773 GeV with the BESIII detector, we measure the absolute branching fraction of the semileptonic decay D+Kˉ0e+νeD^+\rightarrow\bar K^0 e^{+}\nu_{e} to be ${\mathcal B}(D^{+}\rightarrow\bar K^0 e^{+}\nu_{e})=(8.59 \pm 0.14 \pm 0.21)\%using using \bar K^0\to K^0_S\to \pi^0\pi^0$, where the first uncertainty is statistical and the second systematic. Our result is consistent with previous measurements within uncertainties.
There are no more papers matching your filters at the moment.