Instituto de Salud Carlos III (ISCIII)
This paper provides an overview of the current and near-future applications of Artificial Intelligence (AI) in Medicine and Health Care and presents a classification according to their ethical and societal aspects, potential benefits and pitfalls, and issues that can be considered controversial and are not deeply discussed in the literature. This work is based on an analysis of the state of the art of research and technology, including existing software, personal monitoring devices, genetic tests and editing tools, personalized digital models, online platforms, augmented reality devices, and surgical and companion robotics. Motivated by our review, we present and describe the notion of 'extended personalized medicine', we then review existing applications of AI in medicine and healthcare and explore the public perception of medical AI systems, and how they show, simultaneously, extraordinary opportunities and drawbacks that even question fundamental medical concepts. Many of these topics coincide with urgent priorities recently defined by the World Health Organization for the coming decade. In addition, we study the transformations of the roles of doctors and patients in an age of ubiquitous information, identify the risk of a division of Medicine into 'fake-based', 'patient-generated', and 'scientifically tailored', and draw the attention of some aspects that need further thorough analysis and public debate.
Invasive Coronary Angiography (ICA) images are considered the gold standard for assessing the state of the coronary arteries. Deep learning classification methods are widely used and well-developed in different areas where medical imaging evaluation has an essential impact due to the development of computer-aided diagnosis systems that can support physicians in their clinical procedures. In this paper, a new performance analysis of deep learning methods for binary ICA classification with different lesion degrees is reported. To reach this goal, an annotated dataset of ICA images that contains the ground truth, the location of lesions and seven possible severity degrees ranging between 0% and 100% was employed. The ICA images were divided into 'lesion' or 'non-lesion' patches. We aim to study how binary classification performance is affected by the different lesion degrees considered in the positive class. Therefore, five known convolutional neural network architectures were trained with different input images where different lesion degree ranges were gradually incorporated until considering the seven lesion degrees. Besides, four types of experiments with and without data augmentation were designed, whose F-measure and Area Under Curve (AUC) were computed. Reported results achieved an F-measure and AUC of 92.7% and 98.1%, respectively. However, lesion classification is highly affected by the degree of the lesion intended to classify, with 15% less accuracy when <99% lesion patches are present.
There are no more papers matching your filters at the moment.