Laboratoire LIP
Classical Hardness of Learning with Errors
We show that the Learning with Errors (LWE) problem is classically at least as hard as standard worst-case lattice problems, even with polynomial modulus. Previously this was only known under quantum reductions. Our techniques capture the tradeoff between the dimension and the modulus of LWE instances, leading to a much better understanding of the landscape of the problem. The proof is inspired by techniques from several recent cryptographic constructions, most notably fully homomorphic encryption schemes.
View blog
Resources
Computing Integer Powers in Floating-Point Arithmetic
30 May 2007
We introduce two algorithms for accurately evaluating powers to a positive integer in floating-point arithmetic, assuming a fused multiply-add (fma) instruction is available. We show that our log-time algorithm always produce faithfully-rounded results, discuss the possibility of getting correctly rounded results, and show that results correctly rounded in double precision can be obtained if extended-precision is available with the possibility to round into double precision (with a single rounding).
View blog
Resources
There are no more papers matching your filters at the moment.