Nanjing Univ.
VideoITG: Multimodal Video Understanding with Instructed Temporal Grounding

VideoITG introduces an instructed temporal grounding framework that improves video understanding by intelligently selecting relevant frames based on user queries. The framework consistently enhances the performance of Video-LLMs, demonstrating gains of up to 9.0% on long video benchmarks compared to uniform sampling, and enables smaller models to surpass larger ones.

View blog
Resources87
VideoITG: Multimodal Video Understanding with Instructed Temporal Grounding
Recent studies have revealed that selecting informative and relevant video frames can significantly improve the performance of Video Large Language Models (Video-LLMs). Current methods, such as reducing inter-frame redundancy, employing separate models for image-text relevance assessment, or utilizing temporal video grounding for event localization, substantially adopt unsupervised learning paradigms, whereas they struggle to address the complex scenarios in long video understanding. We propose Instructed Temporal Grounding for Videos (VideoITG), featuring customized frame sampling aligned with user instructions. The core of VideoITG is the VidThinker pipeline, an automated annotation framework that explicitly mimics the human annotation process. First, it generates detailed clip-level captions conditioned on the instruction; then, it retrieves relevant video segments through instruction-guided reasoning; finally, it performs fine-grained frame selection to pinpoint the most informative visual evidence. Leveraging VidThinker, we construct the VideoITG-40K dataset, containing 40K videos and 500K instructed temporal grounding annotations. We then design a plug-and-play VideoITG model, which takes advantage of visual language alignment and reasoning capabilities of Video-LLMs, for effective frame selection in a discriminative manner. Coupled with Video-LLMs, VideoITG achieves consistent performance improvements across multiple multimodal video understanding benchmarks, showing its superiority and great potentials for video understanding.
View blog
Resources90
There are no more papers matching your filters at the moment.