STFC Daresbury Laboratory
Yttrium iron garnet is a complex ferrimagnetic insulator with 20 magnon modes which is used extensively in fundamental experimental studies of magnetisation dynamics. As a transition metal oxide with moderate gap (2.8 eV), yttrium iron garnet requires a careful treatment of electronic correlation. We have applied quasiparticle self-consistent GW to provide a fully ab initio description of the electronic structure and resulting magnetic properties, including the parameterisation of a Heisenberg model for magnetic exchange interactions. Subsequent spin dynamical modelling with quantum statistics extends our description to the magnon spectrum and thermodynamic properties such as the Curie temperature, finding favourable agreement with experimental measurements. This work provides a snapshot of the state-of-the art in modelling of complex magnetic insulators.
Rare-earth nickelates RNiO3 (R=rare-earth element) exhibit three kinds of phase transitions with decreasing temperature: a structural transition from a pseudo-cubic to a monoclinic phase, a metal- insulator transition (MIT), and a magnetic transition from a paramagnetic state to an ordered one. The first two occur at the same temperature, which has led to a consensus that the MIT is driven by lattice distortions. We show here that the primary driving force for the MIT is magnetic; however because of the unusual d7 configuration of Ni, additional flexibility in spin configurations are also needed which symmetry-lowing structural deformations make possible. The latter enable Ni to disproportionate into two kinds: a high-spin and a low-spin configuration, which allow the system to reduce its unfavorable orbital moment and also open a gap.
Altermagnets, a unique class of magnetic materials that combines features of both ferromagnets and antiferromagnets, have garnered attention for their potential in spintronics and magnonics. While the electronic properties of altermagnets have been well studied, characterizing their magnon excitations is essential for fully understanding their behavior and enabling practical device applications. In this work, we introduce a measurement protocol combining resonant inelastic X-ray scattering with circular polarization and azimuthal scanning to probe the chiral nature of the altermagnetic split magnon modes in CrSb. This approach circumvents the challenges posed by domain averaging in macroscopic samples, allowing for precise measurements of the polarization and energy of the magnons in individual antiferromagnetic domains. Our findings demonstrate a pronounced circular dichroism in the magnon peaks, with an azimuthal dependence that is consistent with the theoretical predictions and the gg-wave symmetry. By establishing a reliable and accessible method for probing altermagnetic magnons, this work opens new avenues for fundamental studies of these collective excitations and for developing next-generation magnonic device applications.
In this work we investigate the issue of non-physical slip at wall of lattice Boltzmann simulations with the bounce-back boundary scheme. By comparing the analytical solution of two lattice models with four and nine discrete velocities for the force-driven Poiseuille flow, we are able to reveal the exact mechanism causing the issue. In fact, no boundary condition is defined by the bounce-back scheme for the the discrete velocities parallel to wall. Other factors, such as initial conditions and inlet and outlet boundary conditions, can play the role and induce the non-physical slip velocity. Therefore, the issue is not related to the single-relaxation-time scheme. Naturally the key for resolving it is to specify the definition for these velocities. Through a lid-driven cavity flow, we show that the solution can be as easy as no extra effort required for simple geometries, although further study is necessary for complex geometries.
A Time-Projection Chamber (TPC) called the SAMURAI Pion-Reconstruction and Ion-Tracker (Sπ\piRIT) has recently been constructed at Michigan State University as part of an international effort to constrain the symmetry-energy term in the nuclear Equation of State (EoS). The Sπ\piRIT TPC will be used in conjunction with the SAMURAI spectrometer at the Radioactive Isotope Beam Factory (RIBF) at RIKEN to measure yield ratios for pions and other light isospin multiplets produced in central collisions of neutron-rich heavy ions, such as 132^{132}Sn + 124^{124}Sn. The Sπ\piRIT TPC can function both as a TPC detector and as an active target. It has a vertical drift length of 50 cm, parallel to the magnetic field. Gas multiplication is achieved through the use of a multi-wire anode. Image charges are produced in the 12096 pads, and are read out with the recently developed Generic Electronics for TPCs.
This Technical Design Report presents AION-10, a 10-meter atom interferometer to be located at Oxford University using ultracold strontium atoms to make precision measurements of fundamental physics. AION-10 serves as both a prototype for future larger-scale experiments and a versatile scientific instrument capable of conducting its own diverse physics programme. The design features a 10-meter vertical tower housing two atom interferometer sources in an ultra-high vacuum environment. Key engineering challenges include achieving nanometer-level vibrational stability and precise magnetic field control. Solutions include active vibration isolation, specialized magnetic shielding, and a modular assembly approach using professional lifting equipment. Detailed analysis confirms the design meets all performance requirements, with critical optical components remaining within our specifications 97% of the time under realistic operating conditions. Vacuum and vibration measurements in the host building validate that the instrument will achieve the precision needed for quantum sensing applications. This work establishes the technical foundation for scaling atom interferometry to longer baselines while creating a cutting-edge facility for precision measurements that could advance our understanding of fundamental physics.
The field of orbitronics has emerged with great potential to impact information technology by enabling environmentally friendly electronic devices. The main electronic degree of freedom at play is the orbital angular momentum, which can give rise to a myriad of phenomena such as the orbital Hall effect (OHE), torques and orbital magnetoelectric effects. Here, we explore via realistic time-dependent electronic structure simulations the magnetic response of a non-magnetic material, an ultrathin Pt film, to ultrafast laser pulses of different polarizatons and helicities. We demonstrate the generation of significant orbital and spin magnetizations and identify the underlying mechanisms consisting of the interplay of the OHE, inverse Faraday effect and spin-orbit interaction. Our discoveries advocate for the prospect of encoding magnetic information using light in materials that are not inherently magnetic.
The MolMod database is presented, which is openly accessible at this http URL and contains presently intermolecular force fields for over 150 pure fluids. It was developed and is maintained by the Boltzmann-Zuse Society for Computational Molecular Engineering (BZS). The set of molecular models in the MolMod database provides a coherent framework for molecular simulations of fluids. The molecular models in the MolMod database consist of Lennard-Jones interaction sites, point charges, and point dipoles and quadrupoles, which can be equivalently represented by multiple point charges. The force fields can be exported as input files for the simulation programs ms2 and ls1 mardyn, Gromacs, and LAMMPS. To characterise the semantics associated with the numerical database content, a force-field nomenclature is introduced that can also be used in other contexts in materials modelling at the atomistic and mesoscopic levels. The models of the pure substances that are included in the data base were generally optimised such as to yield good representations of experimental data of the vapour-liquid equilibrium with a focus on the vapour pressure and the saturated liquid density. In many cases, the models also yield good predictions of caloric, transport, and interfacial properties of the pure fluids. For all models, references to the original works in which they were developed are provided. The models can be used straightforwardly for predictions of properties of fluid mixtures using established combination rules. Input errors are a major source of errors in simulations. The MolMod database contributes to reducing such errors.
The emergence of topological magnetism in two-dimensional (2D) van der Waals (vdW) magnetic materials promoted 2D heterostructures as key building-blocks of devices for information technology based on topological concepts. Here, we demonstrate the all-electric switching of the topological nature of individual magnetic objects emerging in 2D vdW heterobillayers. We show from the first principles that an external electric field modifies the vdW gap between CrTe 2_2 and (Rh, Ti)Te2_2 layers and alters the underlying magnetic interactions. This enables switching between ferromagnetic skyrmions and meron pairs in the CrTe2_2/RhTe2_2 heterobilayer while it enhances the stability of frustrated antiferromagnetic merons in the CrTe2_2/TiTe2_2 heterobilayer. We envision that the electrical engineering of distinct topological magnetic solitons in a single device could pave the way for novel energy-efficient mechanisms to store and transmit information with applications in spintronics.
Mn3Sn\mathsf{Mn_{3}Sn} has recently attracted considerable attention as a magnetic Weyl semimetal exhibiting concomitant transport anomalies at room temperature. The topology of the electronic bands, their relation to the magnetic ground state and their nonzero Berry curvature lie at the heart of the problem. The examination of the full magnetic Hamiltonian reveals otherwise hidden aspects of these unusual physical properties. Here, we report the full spin wave spectra of Mn3Sn\mathsf{Mn_{3}Sn} measured over a wide momentum - energy range by the inelastic neutron scattering technique. Using a linear spin wave theory, we determine a suitable magnetic Hamiltonian which not only explains the experimental results but also stabilizes the low-temperature helical phase, consistent with our DFT calculations. The effect of this helical ordering on topological band structures is further examined using a tight-binding method, which confirms the elimination of Weyl points in the helical phase. Our work provides a rare example of the intimate coupling between the electronic and spin degrees of freedom for a magnetic Weyl semimetal system.
A study is made of the saturation mechanism of a single superradiant spike of radiation in a Free Electron Laser. A one-dimensional (1D) computer model is developed using the Puffin, un-averaged FEL simulation code, which allows sub-radiation wavelength evolution of both the spike radiation field and the electron dynamics to be modelled until the highly non-linear saturation process of the spike is observed. Animations of the process from the start to the end of the interaction are available. The resultant saturated spike duration is at the sub-wavelength scale and has a broad spectrum. The electrons passing through the spike can both lose and gain energy many times greater than that of the normal non-pulsed FEL interaction. A saturation mechanism is proposed and tested via a simple analysis of the 1D FEL equations. The scaling results of the analysis are seen to be in good agreement with the numerical results. A simple model of three dimensional diffraction effects of the radiation is applied to the results of the 1D simulations. This greatly reduces longer wavelengths of the power spectrum, which are seen to be emitted mainly after the electrons have propagated through the spike, and is seen to be in qualitative agreement with recent experimental results.
The T2K experiment studies oscillations of an off-axis muon neutrino beam between the J-PARC accelerator complex and the Super-Kamiokande detector. Special emphasis is placed on measuring the mixing angle theta_13 by observing electron neutrino appearance via the sub-dominant muon neutrino to electron neutrino oscillation, and searching for CP violation in the lepton sector. The experiment includes a sophisticated, off-axis, near detector, the ND280, situated 280 m downstream of the neutrino production target in order to measure the properties of the neutrino beam and to understand better neutrino interactions at the energy scale below a few GeV. The data collected with the ND280 are used to study charged- and neutral-current neutrino interaction rates and kinematics prior to oscillation, in order to reduce uncertainties in the oscillation measurements by the far detector. A key element of the near detector is the ND280 electromagnetic calorimeter (ECal), consisting of active scintillator bars sandwiched between lead sheets and read outwith multi-pixel photon counters (MPPCs). The ECal is vital to the reconstruction of neutral particles, and the identification of charged particle species. The ECal surrounds the Pi-0 detector (P0D) and the tracking region of the ND280, and is enclosed in the former UA1/NOMAD dipole magnet. This paper describes the design, construction and assembly of the ECal, as well as the materials from which it is composed. The electronic and data acquisition (DAQ) systems are discussed, and performance of the ECal modules, as deduced from measurements with particle beams, cosmic rays, the calibration system, and T2K data, is described.
We describe a technique for reconstruction of the four-dimensional transverse phase space of a beam in an accelerator beamline, taking into account the presence of unknown errors on the strengths of magnets used in the data collection. Use of machine learning allows rapid reconstruction of the phase-space distribution while at the same time providing estimates of the magnet errors. The technique is demonstrated using experimental data from CLARA, an accelerator test facility at Daresbury Laboratory.
Antiferromagnets (AFMs) are strong candidates for the future spintronic and memory applications largely because of their inherently fast dynamics and lack of stray fields, with Mn2Au being one of the most promising. For the numerical modelling of magnetic material properties, it is common to use ab-initio methods, atomistic models and micromagnetics. However, each method alone describes the physics within certain limits. Multiscale methods bridging the gap between these three approaches have been already proposed for ferromagnetic materials. Here, we present a complete multiscale model of the AFM Mn2Au as an exemplar material, starting with results from ab-initio methods going via atomistic spin dynamics (ASD) to an AFM Landau-Lifshitz-Bloch (AFM-LLB) model. Firstly, bulk is modelled using a classical spin Hamiltonian constructed based on earlier first-principles calculations. Secondly, this spin model is used in the stochastic Landau-Lifshitz-Gilbert (LLG) to calculate temperature-dependent equilibrium properties, such as magnetization and magnetic susceptibilities. Thirdly, the temperature dependent micromagnetic parameters are used in the AFM-LLB. We validate our approach by comparing the ASD and AFM-LLB models for three paradigmatic cases; (i) Damped magnetic oscillations, (ii) magnetization dynamics following a heat pulse resembling pump-probe experiments, (iii) magnetic domain wall motion under thermal gradients.
Magnetic frustration in two-dimensional spin lattices with triangular motifs underpins a series of exotic states, ranging from multi-Q configurations to disordered spin-glasses. The antiferromagnetic kagome lattice, characterized by its network of corner-sharing triangles, represents a paradigmatic frustrated system exhibiting macroscopic degeneracy. Expanding upon the kagomerization mechanism, we focus on the magnetic breathing kagome lattice formed by a Mn monolayer deposited on a heavy metal substrate and capped with h-BN. The Mn kagome arrangement induces pronounced magnetic frustration, as evidenced by the nearly flat bands derived from spin spiral energy calculations. Including further-neighbor interactions reveals a spin spiral energy minimum along the Γ\Gamma-K line and an intriguing triple-Q state with nonzero topological charge, potentially leading to highly nonlinear Hall effects. Furthermore, the flat band properties can further give rise to an even more complex spin configuration, marked by several Q-pockets in the spin structure factor. These results present a fertile ground for advancing the study of multi-Q states and exploring emergent topological phenomena.
Although accelerator technology has matured sufficiently, state-of-the-art X-ray linacs for radiotherapy and cargo-scanning capture merely 30-50% of the electrons from a thermionic cathode, requiring a higher cathode current and leaving uncaptured electrons to cause problems due to back bombardment, shortening of cathode life, etc. Any solution to increase capture should be effective, simple, reliable, compact, and low cost in order to be adopted by industry. To address this, we present the design of a 6 MeV high capture efficiency S-band electron linac that captures 90% of the initial DC beam. This linac does not require any extra parts that would increase the cost as the high efficiency is achieved via a low-field-amplitude in the first bunching cell to decrease the number of backstreaming electrons, to velocity bunch the electron beam, and recapture backstreaming electrons. Under the low field amplitude, any electrons launched at decelerating phases travel backward with low speeds, thus most of them can catch the next RF cycle, and get re-accelerated/recaptured. As the electron speed is low, the cell length is also shorter than existing linacs. Such a short field is achieved by the use of asymmetric cells with differential coupling to the side-coupled cells. Our novel design has implications for all commercial high current thermionic gun linacs for increasing beam current and increasing cathode lifetime.
The muon has played a central role in establishing the Standard Model of particle physics, and continues to provide valuable information about the nature of new physics. A new complex at Fermilab, the Advanced Muon Facility, would provide the world's most intense positive and negative muon beams by exploiting the full potential of PIP-II and the Booster upgrade. This facility would enable a broad muon physics program, including studies of charged lepton flavor violation, muonium-antimuonium transitions, a storage ring muon EDM experiment, and muon spin rotation experiments. This document describes a staged realization of this complex, together with a series of next-generation experiments to search for charged lepton flavor violation.
The structure of the unbound 15^{15}F nucleus is investigated using the inverse kinematics resonant scattering of a radioactive 14^{14}O beam impinging on a CH2_2 target. The analysis of 1^{1}H(14^{14}O,p)14^{14}O and 1^{1}H(14^{14}O,2p)13^{13}N reactions allowed the confirmation of the previously observed narrow 1/21/2^{-} resonance, near the two-proton decay threshold, and the identification of two new narrow 5/2^{-} and 3/2^{-} resonances. The newly observed levels decay by 1p emission to the ground of 14^{14}O, and by sequential 2p emission to the ground state (g.s.) of 13^{13}N via the 11^- resonance of 14^{14}O. Gamow shell model (GSM) analysis of the experimental data suggests that the wave functions of the 5/2^{-} and 3/2^{-} resonances may be collectivized by the continuum coupling to nearby 2p- and 1p- decay channels. The observed excitation function 1^{1}H(14^{14}O,p)14^{14}O and resonance spectrum in 15^{15}F are well reproduced in the unified framework of the GSM.
Lattice reconstruction in twisted transition-metal dichalcogenide (TMD) bilayers gives rise to piezo- and ferroelectric moir\'e potentials for electrons and holes, as well as a modulation of the hybridisation across the bilayer. Here, we develop hybrid kp\mathbf{k}\cdot \mathbf{p} tight-binding models to describe electrons and holes in the relevant valleys of twisted TMD homobilayers with parallel (P) and anti-parallel (AP) orientations of the monolayer unit cells. We apply these models to describe moir\'e superlattice effects in twisted WSe2{}_2 bilayers, in conjunction with microscopic \emph{ab initio} calculations, and considering the influence of encapsulation, pressure and an electric displacement field. Our analysis takes into account mesoscale lattice relaxation, interlayer hybridisation, piezopotentials, and a weak ferroelectric charge transfer between the layers, and describes a multitude of possibilities offered by this system, depending on the choices of P or AP orientation, twist angle magnitude, and electron/hole valley.
The symmetry energy contribution to the nuclear Equation of State (EoS) impacts various phenomena in nuclear astrophysics, nuclear structure, and nuclear reactions. Its determination is a key objective of contemporary nuclear physics with consequences for the understanding of dense matter within neutron stars. We examine the results of laboratory experiments that have provided initial constraints on the nuclear symmetry energy and its density dependence at and somewhat below normal nuclear matter density. Some of these constraints have been derived from properties of nuclei. Others have been derived from the nuclear response to electroweak and hadronic probes. We also examine the most frequently used theoretical models that predict the symmetry energy and its slope. By comparing existing constraints on the symmetry pressure to theories, we demonstrate how the contribution of the three-body force, an essential ingredient in neutron matter models, can be determined.
There are no more papers matching your filters at the moment.