Sun Yat-sen University-Shenzhen
BadCLIP: Dual-Embedding Guided Backdoor Attack on Multimodal Contrastive Learning
Studying backdoor attacks is valuable for model copyright protection and enhancing defenses. While existing backdoor attacks have successfully infected multimodal contrastive learning models such as CLIP, they can be easily countered by specialized backdoor defenses for MCL models. This paper reveals the threats in this practical scenario that backdoor attacks can remain effective even after defenses and introduces the \emph{\toolns} attack, which is resistant to backdoor detection and model fine-tuning defenses. To achieve this, we draw motivations from the perspective of the Bayesian rule and propose a dual-embedding guided framework for backdoor attacks. Specifically, we ensure that visual trigger patterns approximate the textual target semantics in the embedding space, making it challenging to detect the subtle parameter variations induced by backdoor learning on such natural trigger patterns. Additionally, we optimize the visual trigger patterns to align the poisoned samples with target vision features in order to hinder the backdoor unlearning through clean fine-tuning. Extensive experiments demonstrate that our attack significantly outperforms state-of-the-art baselines (+45.3% ASR) in the presence of SoTA backdoor defenses, rendering these mitigation and detection strategies virtually ineffective. Furthermore, our approach effectively attacks some more rigorous scenarios like downstream tasks. We believe that this paper raises awareness regarding the potential threats associated with the practical application of multimodal contrastive learning and encourages the development of more robust defense mechanisms.
View blog
Resources
Robust Anti-Backdoor Instruction Tuning in LVLMs
Large visual language models (LVLMs) have demonstrated excellent instruction-following capabilities, yet remain vulnerable to stealthy backdoor attacks when finetuned using contaminated data. Existing backdoor defense techniques are usually developed for single-modal visual or language models under fully parameter-adjustable settings or rely on supervisory knowledge during training. However, in real-world scenarios, defenders cannot modify frozen visual encoders or core LLM parameters, nor possess prior knowledge of unknown trigger patterns or target responses. Motivated by the empirical finding that LVLMs readily overfit to fixed, unknown triggers, which can embed malicious associations during adapter-level tuning, we aim to design a defense that operates without access to core weights or attack priors. To this end, we introduce a lightweight, certified-agnostic defense framework, Robust Instruction Tuning, that finetunes only adapter modules and text embedding layers under instruction tuning. Our method integrates two complementary regularizations: (1) Input Diversity Regularization, which perturbs trigger components across training samples to disrupt consistent spurious cues; and (2) Anomalous Activation Regularization, which dynamically sparses adapter weights exhibiting abnormally sharp activations linked to backdoor patterns. These mechanisms jointly guide the model toward learning semantically grounded representations rather than memorizing superficial trigger-response mappings. Extensive experiments against seven attacks on Flickr30k and MSCOCO demonstrate that ours reduces their attack success rate to nearly zero, with an increase in training cost of less than 15%.
View blog
Resources
Unlearning Backdoor Threats: Enhancing Backdoor Defense in Multimodal Contrastive Learning via Local Token Unlearning
Multimodal contrastive learning has emerged as a powerful paradigm for building high-quality features using the complementary strengths of various data modalities. However, the open nature of such systems inadvertently increases the possibility of backdoor attacks. These attacks subtly embed malicious behaviors within the model during training, which can be activated by specific triggers in the inference phase, posing significant security risks. Despite existing countermeasures through fine-tuning that reduce the adverse impacts of such attacks, these defenses often degrade the clean accuracy and necessitate the construction of extensive clean training pairs. In this paper, we explore the possibility of a less-cost defense from the perspective of model unlearning, that is, whether the model can be made to quickly \textbf{u}nlearn \textbf{b}ackdoor \textbf{t}hreats (UBT) by constructing a small set of poisoned samples. Specifically, we strengthen the backdoor shortcuts to discover suspicious samples through overfitting training prioritized by weak similarity samples. Building on the initial identification of suspicious samples, we introduce an innovative token-based localized forgetting training regime. This technique specifically targets the poisoned aspects of the model, applying a focused effort to unlearn the backdoor associations and trying not to damage the integrity of the overall model. Experimental results show that our method not only ensures a minimal success rate for attacks, but also preserves the model's high clean accuracy.
View blog
Resources
CleanerCLIP: Fine-grained Counterfactual Semantic Augmentation for Backdoor Defense in Contrastive Learning

CleanerCLIP applies a fine-grained counterfactual semantic augmentation strategy to defend multimodal contrastive learning models like CLIP against backdoor attacks during fine-tuning. This approach substantially reduces the Attack Success Rate, particularly against stealthy attacks such as BadCLIP, while preserving the model's performance on clean tasks.

View blog
Resources
Sensing Performance Analysis in Cooperative Air-Ground ISAC Networks for LAE
To support the development of low altitude economy, the air-ground integrated sensing and communication (ISAC) networks need to be constructed to provide reliable and robust communication and sensing services. In this paper, the sensing capabilities in the cooperative air-ground ISAC networks are evaluated in terms of area radar detection coverage probability under a constant false alarm rate, where the distribution of aggregated sensing interferences is analyzed as a key intermediate result. Compared with the analysis based on the strongest interferer approximation, taking the aggregated sensing interference into consideration is better suited for pico-cell scenarios with high base station density. Simulations are conducted to validate the analysis.
View blog
Resources
There are no more papers matching your filters at the moment.