adversarial-robustness
AI systems can be trained to conceal their true capabilities during evaluations, a phenomenon termed "sandbagging," which poses a risk to safety assessments. Research by UK AISI, FAR.AI, and Anthropic demonstrated that black-box detection methods failed against such strategically underperforming models, although one-shot fine-tuning proved effective for eliciting hidden capabilities.
Researchers at Anthropic introduced Selective GradienT Masking (SGTM), a pre-training method designed to localize and remove specific capabilities from large language models to address dual-use risks. This technique achieves an improved trade-off between retaining general knowledge and forgetting targeted information, resists adversarial fine-tuning up to 7 times better than prior unlearning methods, and demonstrates reduced information leakage in larger models.
Researchers from Zhejiang University and ByteDance introduced CodeVision, a "code-as-tool" framework that equips Multimodal Large Language Models (MLLMs) to programmatically interact with images. The approach significantly improves MLLM robustness by correcting common image corruptions and enables state-of-the-art multi-tool reasoning through emergent tool use and error recovery.
The OMEGA framework introduces a training-free method to enhance diffusion models for multi-agent driving scene generation, significantly boosting scenario realism, structural consistency, and controllability. It achieves a 72.27% valid scene rate on nuPlan, a 39.92 percentage point increase over baselines, and generates 5 times more near-collision frames for adversarial testing while maintaining plausibility.
Recent advances in multi-modal large language models (MLLMs) have enabled unified perception-reasoning capabilities, yet these systems remain highly vulnerable to jailbreak attacks that bypass safety alignment and induce harmful behaviors. Existing benchmarks such as JailBreakV-28K, MM-SafetyBench, and HADES provide valuable insights into multi-modal vulnerabilities, but they typically focus on limited attack scenarios, lack standardized defense evaluation, and offer no unified, reproducible toolbox. To address these gaps, we introduce OmniSafeBench-MM, which is a comprehensive toolbox for multi-modal jailbreak attack-defense evaluation. OmniSafeBench-MM integrates 13 representative attack methods, 15 defense strategies, and a diverse dataset spanning 9 major risk domains and 50 fine-grained categories, structured across consultative, imperative, and declarative inquiry types to reflect realistic user intentions. Beyond data coverage, it establishes a three-dimensional evaluation protocol measuring (1) harmfulness, distinguished by a granular, multi-level scale ranging from low-impact individual harm to catastrophic societal threats, (2) intent alignment between responses and queries, and (3) response detail level, enabling nuanced safety-utility analysis. We conduct extensive experiments on 10 open-source and 8 closed-source MLLMs to reveal their vulnerability to multi-modal jailbreak. By unifying data, methodology, and evaluation into an open-source, reproducible platform, OmniSafeBench-MM provides a standardized foundation for future research. The code is released at this https URL.
10
Worst-case generation plays a critical role in evaluating robustness and stress-testing systems under distribution shifts, in applications ranging from machine learning models to power grids and medical prediction systems. We develop a generative modeling framework for worst-case generation for a pre-specified risk, based on min-max optimization over continuous probability distributions, namely the Wasserstein space. Unlike traditional discrete distributionally robust optimization approaches, which often suffer from scalability issues, limited generalization, and costly worst-case inference, our framework exploits the Brenier theorem to characterize the least favorable (worst-case) distribution as the pushforward of a transport map from a continuous reference measure, enabling a continuous and expressive notion of risk-induced generation beyond classical discrete DRO formulations. Based on the min-max formulation, we propose a Gradient Descent Ascent (GDA)-type scheme that updates the decision model and the transport map in a single loop, establishing global convergence guarantees under mild regularity assumptions and possibly without convexity-concavity. We also propose to parameterize the transport map using a neural network that can be trained simultaneously with the GDA iterations by matching the transported training samples, thereby achieving a simulation-free approach. The efficiency of the proposed method as a risk-induced worst-case generator is validated by numerical experiments on synthetic and image data.
Modern deep neural networks, particularly Vision Transformers, exhibit a persistent vulnerability to "fooling images," which are unrecognizable synthetic inputs confidently misclassified by models. A new minimalist black-box attack, SPOOF, achieves high-confidence fooling with significantly fewer pixel changes and computational resources compared to prior methods.
Language models are vulnerable to short adversarial suffixes that can reliably alter predictions. Previous works usually find such suffixes with gradient search or rule-based methods, but these are brittle and often tied to a single task or model. In this paper, a reinforcement learning framework is used where the suffix is treated as a policy and trained with Proximal Policy Optimization against a frozen model as a reward oracle. Rewards are shaped using calibrated cross-entropy, removing label bias and aggregating across surface forms to improve transferability. The proposed method is evaluated on five diverse NLP benchmark datasets, covering sentiment, natural language inference, paraphrase, and commonsense reasoning, using three distinct language models: Qwen2-1.5B Instruct, TinyLlama-1.1B Chat, and Phi-1.5. Results show that RL-trained suffixes consistently degrade accuracy and transfer more effectively across tasks and models than previous adversarial triggers of similar genres.
Evaluating vision-language models (VLMs) in scientific domains like mathematics and physics poses unique challenges that go far beyond predicting final answers. These domains demand conceptual understanding, symbolic reasoning, and adherence to formal laws, requirements that most existing benchmarks fail to address. In particular, current datasets tend to be static, lacking intermediate reasoning steps, robustness to variations, or mechanisms for verifying scientific correctness. To address these limitations, we introduce PRiSM, a synthetic, fully dynamic, and multimodal benchmark for evaluating scientific reasoning via grounded Python code. PRiSM includes over 24,750 university-level physics and math problems, and it leverages our scalable agent-based pipeline, PrismAgent, to generate well-structured problem instances. Each problem contains dynamic textual and visual input, a generated figure, alongside rich structured outputs: executable Python code for ground truth generation and verification, and detailed step-by-step reasoning. The dynamic nature and Python-powered automated ground truth generation of our benchmark allow for fine-grained experimental auditing of multimodal VLMs, revealing failure modes, uncertainty behaviors, and limitations in scientific reasoning. To this end, we propose five targeted evaluation tasks covering generalization, symbolic program synthesis, perturbation robustness, reasoning correction, and ambiguity resolution. Through comprehensive evaluation of existing VLMs, we highlight their limitations and showcase how PRiSM enables deeper insights into their scientific reasoning capabilities.
The Dropout Prompt Learning (DroPLe) framework introduces an adaptive, token-level dropout mechanism combined with residual entropy regularization to enhance the robustness and generalization of Vision-Language Models (VLMs) adapted through prompt learning in challenging data environments. This approach achieved an average Harmonic Mean of 82.10% in base-to-novel generalization, outperforming previous methods by up to 5.10 percentage points and showing strong performance across few-shot, long-tail, and out-of-distribution tasks.
1
The growing prevalence of artificial intelligence (AI) in various applications underscores the need for agents that can successfully navigate and adapt to an ever-changing, open-ended world. A key challenge is ensuring these AI agents are robust, excelling not only in familiar settings observed during training but also effectively generalising to previously unseen and varied scenarios. In this thesis, we harness methodologies from open-endedness and multi-agent learning to train and evaluate robust AI agents capable of generalising to novel environments, out-of-distribution inputs, and interactions with other co-player agents. We begin by introducing MiniHack, a sandbox framework for creating diverse environments through procedural content generation. Based on the game of NetHack, MiniHack enables the construction of new tasks for reinforcement learning (RL) agents with a focus on generalisation. We then present Maestro, a novel approach for generating adversarial curricula that progressively enhance the robustness and generality of RL agents in two-player zero-sum games. We further probe robustness in multi-agent domains, utilising quality-diversity methods to systematically identify vulnerabilities in state-of-the-art, pre-trained RL policies within the complex video game football domain, characterised by intertwined cooperative and competitive dynamics. Finally, we extend our exploration of robustness to the domain of LLMs. Here, our focus is on diagnosing and enhancing the robustness of LLMs against adversarial prompts, employing evolutionary search to generate a diverse range of effective inputs that aim to elicit undesirable outputs from an LLM. This work collectively paves the way for future advancements in AI robustness, enabling the development of agents that not only adapt to an ever-evolving world but also thrive in the face of unforeseen challenges and interactions.
Recent image protection mechanisms such as Glaze and Nightshade introduce imperceptible, adversarially designed perturbations intended to disrupt downstream text-to-image generative models. While their empirical effectiveness is known, the internal structure, detectability, and representational behavior of these perturbations remain poorly understood. This study provides a systematic, explainable AI analysis using a unified framework that integrates white-box feature-space inspection and black-box signal-level probing. Through latent-space clustering, feature-channel activation analysis, occlusion-based spatial sensitivity mapping, and frequency-domain characterization, we show that protection mechanisms operate as structured, low-entropy perturbations tightly coupled to underlying image content across representational, spatial, and spectral domains. Protected images preserve content-driven feature organization with protection-specific substructure rather than inducing global representational drift. Detectability is governed by interacting effects of perturbation entropy, spatial deployment, and frequency alignment, with sequential protection amplifying detectable structure rather than suppressing it. Frequency-domain analysis shows that Glaze and Nightshade redistribute energy along dominant image-aligned frequency axes rather than introducing diffuse noise. These findings indicate that contemporary image protection operates through structured feature-level deformation rather than semantic dislocation, explaining why protection signals remain visually subtle yet consistently detectable. This work advances the interpretability of adversarial image protection and informs the design of future defenses and detection strategies for generative AI systems.
Researchers introduced "Doublespeak," an in-context representation hijacking attack that leverages benign words to covertly prompt Large Language Models to generate harmful content. This method exploits the dynamic nature of internal representations, bypassing existing safety mechanisms and achieving high attack success rates, including a 92% bypass against a dedicated safety guardrail.
The local news landscape, a vital source of reliable information for 28 million Americans, faces a growing threat from Pink Slime Journalism, a low-quality, auto-generated articles that mimic legitimate local reporting. Detecting these deceptive articles requires a fine-grained analysis of their linguistic, stylistic, and lexical characteristics. In this work, we conduct a comprehensive study to uncover the distinguishing patterns of Pink Slime content and propose detection strategies based on these insights. Beyond traditional generation methods, we highlight a new adversarial vector: modifications through large language models (LLMs). Our findings reveal that even consumer-accessible LLMs can significantly undermine existing detection systems, reducing their performance by up to 40% in F1-score. To counter this threat, we introduce a robust learning framework specifically designed to resist LLM-based adversarial attacks and adapt to the evolving landscape of automated pink slime journalism, and showed and improvement by up to 27%.
To address the trade-off between robustness and performance for robust VLM, we observe that function words could incur vulnerability of VLMs against cross-modal adversarial attacks, and propose Function-word De-Attention (FDA) accordingly to mitigate the impact of function words. Similar to differential amplifiers, our FDA calculates the original and the function-word cross-attention within attention heads, and differentially subtracts the latter from the former for more aligned and robust VLMs. Comprehensive experiments include 2 SOTA baselines under 6 different attacks on 2 downstream tasks, 3 datasets, and 3 models. Overall, our FDA yields an average 18/13/53% ASR drop with only 0.2/0.3/0.6% performance drops on the 3 tested models on retrieval, and a 90% ASR drop with a 0.3% performance gain on visual grounding. We demonstrate the scalability, generalization, and zero-shot performance of FDA experimentally, as well as in-depth ablation studies and analysis. Code will be made publicly at this https URL.
Researchers from Shanghaitech University and Shanghai AI Lab developed the Think-Reflect-Revise (TRR) framework for Large Vision Language Models (LVLMs), introducing a policy-guided self-reflection and self-correction loop. This approach significantly enhances model robustness against sophisticated jailbreak attacks, improving safety rates from as low as 6.5% to 97.0% on specific benchmarks, while maintaining general reasoning abilities.
The Model Context Protocol (MCP) has emerged as the de facto standard for connecting Large Language Models (LLMs) to external data and tools, effectively functioning as the "USB-C for Agentic AI." While this decoupling of context and execution solves critical interoperability challenges, it introduces a profound new threat landscape where the boundary between epistemic errors (hallucinations) and security breaches (unauthorized actions) dissolves. This Systematization of Knowledge (SoK) aims to provide a comprehensive taxonomy of risks in the MCP ecosystem, distinguishing between adversarial security threats (e.g., indirect prompt injection, tool poisoning) and epistemic safety hazards (e.g., alignment failures in distributed tool delegation). We analyze the structural vulnerabilities of MCP primitives, specifically Resources, Prompts, and Tools, and demonstrate how "context" can be weaponized to trigger unauthorized operations in multi-agent environments. Furthermore, we survey state-of-the-art defenses, ranging from cryptographic provenance (ETDI) to runtime intent verification, and conclude with a roadmap for securing the transition from conversational chatbots to autonomous agentic operating systems.
Retrieval-Augmented Generation (RAG) systems have significantly reduced hallucinations in Large Language Models (LLMs) by grounding responses in external context. However, standard RAG architectures suffer from a critical vulnerability: Retrieval Sycophancy. When presented with a query based on a false premise or a common misconception, vector-based retrievers tend to fetch documents that align with the user's bias rather than objective truth, leading the model to "hallucinate with citations." In this work, we introduce Falsification-Verification Alignment RAG (FVA-RAG), a framework that shifts the retrieval paradigm from Inductive Verification (seeking support) to Deductive Falsification (seeking disproof). Unlike existing "Self-Correction" methods that rely on internal consistency, FVA-RAG deploys a distinct Adversarial Retrieval Policy that actively generates "Kill Queries"-targeted search terms designed to surface contradictory evidence. We introduce a dual-verification mechanism that explicitly weighs the draft answer against this "Anti-Context." Preliminary experiments on a dataset of common misconceptions demonstrate that FVA-RAG significantly improves robustness against sycophantic hallucinations compared to standard RAG baselines, effectively acting as an inference-time "Red Team" for factual generation.
Ensuring the authenticity of video content remains challenging as DeepFake generation becomes increasingly realistic and robust against detection. Most existing detectors implicitly assume temporally consistent and clean facial sequences, an assumption that rarely holds in real-world scenarios where compression artifacts, occlusions, and adversarial attacks destabilize face detection and often lead to invalid or misdetected faces. To address these challenges, we propose a Laplacian-Regularized Graph Convolutional Network (LR-GCN) that robustly detects DeepFakes from noisy or unordered face sequences, while being trained only on clean facial data. Our method constructs an Order-Free Temporal Graph Embedding (OF-TGE) that organizes frame-wise CNN features into an adaptive sparse graph based on semantic affinities. Unlike traditional methods constrained by strict temporal continuity, OF-TGE captures intrinsic feature consistency across frames, making it resilient to shuffled, missing, or heavily corrupted inputs. We further impose a dual-level sparsity mechanism on both graph structure and node features to suppress the influence of invalid faces. Crucially, we introduce an explicit Graph Laplacian Spectral Prior that acts as a high-pass operator in the graph spectral domain, highlighting structural anomalies and forgery artifacts, which are then consolidated by a low-pass GCN aggregation. This sequential design effectively realizes a task-driven spectral band-pass mechanism that suppresses background information and random noise while preserving manipulation cues. Extensive experiments on FF++, Celeb-DFv2, and DFDC demonstrate that LR-GCN achieves state-of-the-art performance and significantly improved robustness under severe global and local disruptions, including missing faces, occlusions, and adversarially perturbed face detections.
Large language models are vulnerable to jailbreak attacks, threatening their safe deployment in real-world applications. This paper studies black-box multi-turn jailbreaks, aiming to train attacker LLMs to elicit harmful content from black-box models through a sequence of prompt-output interactions. Existing approaches typically rely on single turn optimization, which is insufficient for learning long-term attack strategies. To bridge this gap, we formulate the problem as a multi-turn reinforcement learning task, directly optimizing the harmfulness of the final-turn output as the outcome reward. To mitigate sparse supervision and promote long-term attack strategies, we propose two heuristic process rewards: (1) controlling the harmfulness of intermediate outputs to prevent triggering the black-box model's rejection mechanisms, and (2) maintaining the semantic relevance of intermediate outputs to avoid drifting into irrelevant content. Experimental results on multiple benchmarks show consistently improved attack success rates across multiple models, highlighting the effectiveness of our approach. The code is available at this https URL. Warning: This paper contains examples of harmful content.
2
There are no more papers matching your filters at the moment.