Tencent Games Digital Content Technology Center
We present a novel locality-based learning method for cleaning and solving optical motion capture data. Given noisy marker data, we propose a new heterogeneous graph neural network which treats markers and joints as different types of nodes, and uses graph convolution operations to extract the local features of markers and joints and transform them to clean motions. To deal with anomaly markers (e.g. occluded or with big tracking errors), the key insight is that a marker's motion shows strong correlations with the motions of its immediate neighboring markers but less so with other markers, a.k.a. locality, which enables us to efficiently fill missing markers (e.g. due to occlusion). Additionally, we also identify marker outliers due to tracking errors by investigating their acceleration profiles. Finally, we propose a training regime based on representation learning and data augmentation, by training the model on data with masking. The masking schemes aim to mimic the occluded and noisy markers often observed in the real data. Finally, we show that our method achieves high accuracy on multiple metrics across various datasets. Extensive comparison shows our method outperforms state-of-the-art methods in terms of prediction accuracy of occluded marker position error by approximately 20%, which leads to a further error reduction on the reconstructed joint rotations and positions by 30%. The code and data for this paper are available at this https URL.
52
Optical motion capture (MoCap) is the "gold standard" for accurately capturing full-body motions. To make use of raw MoCap point data, the system labels the points with corresponding body part locations and solves the full-body motions. However, MoCap data often contains mislabeling, occlusion and positional errors, requiring extensive manual correction. To alleviate this burden, we introduce RoMo, a learning-based framework for robustly labeling and solving raw optical motion capture data. In the labeling stage, RoMo employs a divide-and-conquer strategy to break down the complex full-body labeling challenge into manageable subtasks: alignment, full-body segmentation and part-specific labeling. To utilize the temporal continuity of markers, RoMo generates marker tracklets using a K-partite graph-based clustering algorithm, where markers serve as nodes, and edges are formed based on positional and feature similarities. For motion solving, to prevent error accumulation along the kinematic chain, we introduce a hybrid inverse kinematic solver that utilizes joint positions as intermediate representations and adjusts the template skeleton to match estimated joint positions. We demonstrate that RoMo achieves high labeling and solving accuracy across multiple metrics and various datasets. Extensive comparisons show that our method outperforms state-of-the-art research methods. On a real dataset, RoMo improves the F1 score of hand labeling from 0.94 to 0.98, and reduces joint position error of body motion solving by 25%. Furthermore, RoMo can be applied in scenarios where commercial systems are inadequate. The code and data for RoMo are available at this https URL.
Recent advances in localized implicit functions have enabled neural implicit representation to be scalable to large scenes. However, the regular subdivision of 3D space employed by these approaches fails to take into account the sparsity of the surface occupancy and the varying granularities of geometric details. As a result, its memory footprint grows cubically with the input volume, leading to a prohibitive computational cost even at a moderately dense decomposition. In this work, we present a learnable hierarchical implicit representation for 3D surfaces, coded OctField, that allows high-precision encoding of intricate surfaces with low memory and computational budget. The key to our approach is an adaptive decomposition of 3D scenes that only distributes local implicit functions around the surface of interest. We achieve this goal by introducing a hierarchical octree structure to adaptively subdivide the 3D space according to the surface occupancy and the richness of part geometry. As octree is discrete and non-differentiable, we further propose a novel hierarchical network that models the subdivision of octree cells as a probabilistic process and recursively encodes and decodes both octree structure and surface geometry in a differentiable manner. We demonstrate the value of OctField for a range of shape modeling and reconstruction tasks, showing superiority over alternative approaches.
62
There are no more papers matching your filters at the moment.