Univeristy of Manchester
Recent progress on intelligent fault diagnosis (IFD) has greatly depended on deep representation learning and plenty of labeled data. However, machines often operate with various working conditions or the target task has different distributions with the collected data used for training (the domain shift problem). Besides, the newly collected test data in the target domain are usually unlabeled, leading to unsupervised deep transfer learning based (UDTL-based) IFD problem. Although it has achieved huge development, a standard and open source code framework as well as a comparative study for UDTL-based IFD are not yet established. In this paper, we construct a new taxonomy and perform a comprehensive review of UDTL-based IFD according to different tasks. Comparative analysis of some typical methods and datasets reveals some open and essential issues in UDTL-based IFD which are rarely studied, including transferability of features, influence of backbones, negative transfer, physical priors, etc. To emphasize the importance and reproducibility of UDTL-based IFD, the whole test framework will be released to the research community to facilitate future research. In summary, the released framework and comparative study can serve as an extended interface and basic results to carry out new studies on UDTL-based IFD. The code framework is available at \url{this https URL}.
437
Neural networks are essential components of learning-based software systems. However, their high compute, memory, and power requirements make using them in low resources domains challenging. For this reason, neural networks are often quantized before deployment. Existing quantization techniques tend to degrade the network accuracy. We propose Counter-Example Guided Neural Network Quantization Refinement (CEG4N). This technique combines search-based quantization and equivalence verification: the former minimizes the computational requirements, while the latter guarantees that the network's output does not change after quantization. We evaluate CEG4N~on a diverse set of benchmarks, including large and small networks. Our technique successfully quantizes the networks in our evaluation while producing models with up to 72% better accuracy than state-of-the-art techniques.
There are no more papers matching your filters at the moment.