University College of Nabi Akram
The accurate segmentation of medical images is critical for various healthcare applications. Convolutional neural networks (CNNs), especially Fully Convolutional Networks (FCNs) like U-Net, have shown remarkable success in medical image segmentation tasks. However, they have limitations in capturing global context and long-range relations, especially for objects with significant variations in shape, scale, and texture. While transformers have achieved state-of-the-art results in natural language processing and image recognition, they face challenges in medical image segmentation due to image locality and translational invariance issues. To address these challenges, this paper proposes an innovative U-shaped network called BEFUnet, which enhances the fusion of body and edge information for precise medical image segmentation. The BEFUnet comprises three main modules, including a novel Local Cross-Attention Feature (LCAF) fusion module, a novel Double-Level Fusion (DLF) module, and dual-branch encoder. The dual-branch encoder consists of an edge encoder and a body encoder. The edge encoder employs PDC blocks for effective edge information extraction, while the body encoder uses the Swin Transformer to capture semantic information with global attention. The LCAF module efficiently fuses edge and body features by selectively performing local cross-attention on features that are spatially close between the two modalities. This local approach significantly reduces computational complexity compared to global cross-attention while ensuring accurate feature matching. BEFUnet demonstrates superior performance over existing methods across various evaluation metrics on medical image segmentation datasets.
This research paper addresses the challenges associated with traffic sign detection in self-driving vehicles and driver assistance systems. The development of reliable and highly accurate algorithms is crucial for the widespread adoption of traffic sign recognition and detection (TSRD) in diverse real-life scenarios. However, this task is complicated by suboptimal traffic images affected by factors such as camera movement, adverse weather conditions, and inadequate lighting. This study specifically focuses on traffic sign detection methods and introduces the application of the Transformer model, particularly the Vision Transformer variants, to tackle this task. The Transformer's attention mechanism, originally designed for natural language processing, offers improved parallel efficiency. Vision Transformers have demonstrated success in various domains, including autonomous driving, object detection, healthcare, and defense-related applications. To enhance the efficiency of the Transformer model, the research proposes a novel strategy that integrates a locality inductive bias and a transformer module. This includes the introduction of the Efficient Convolution Block and the Local Transformer Block, which effectively capture short-term and long-term dependency information, thereby improving both detection speed and accuracy. Experimental evaluations demonstrate the significant advancements achieved by this approach, particularly when applied to the GTSDB dataset.
This research develops a new method for constructing binary quantum stabilizer codes by utilizing association schemes derived from finite Abelian and non-Abelian groups. The approach successfully generated numerous codes with lengths up to 40 qubits, including optimal codes and those with high minimum distances, such as [[21, 5, 7]] and [[40, 21, 7]].
There are no more papers matching your filters at the moment.