University of Evry - Paris-Saclay
Hybrid Deep Learning and Handcrafted Feature Fusion for Mammographic Breast Cancer Classification
Automated breast cancer classification from mammography remains a significant challenge due to subtle distinctions between benign and malignant tissue. In this work, we present a hybrid framework combining deep convolutional features from a ResNet-50 backbone with handcrafted descriptors and transformer-based embeddings. Using the CBIS-DDSM dataset, we benchmark our ResNet-50 baseline (AUC: 78.1%) and demonstrate that fusing handcrafted features with deep ResNet-50 and DINOv2 features improves AUC to 79.6% (setup d1), with a peak recall of 80.5% (setup d1) and highest F1 score of 67.4% (setup d1). Our experiments show that handcrafted features not only complement deep representations but also enhance performance beyond transformer-based embeddings. This hybrid fusion approach achieves results comparable to state-of-the-art methods while maintaining architectural simplicity and computational efficiency, making it a practical and effective solution for clinical decision support.
View blog
Resources
IKrNet: A Neural Network for Detecting Specific Drug-Induced Patterns in Electrocardiograms Amidst Physiological Variability
Monitoring and analyzing electrocardiogram (ECG) signals, even under varying physiological conditions, including those influenced by physical activity, drugs and stress, is crucial to accurately assess cardiac health. However, current AI-based methods often fail to account for how these factors interact and alter ECG patterns, ultimately limiting their applicability in real-world settings. This study introduces IKrNet, a novel neural network model, which identifies drug-specific patterns in ECGs amidst certain physiological conditions. IKrNet's architecture incorporates spatial and temporal dynamics by using a convolutional backbone with varying receptive field size to capture spatial features. A bi-directional Long Short-Term Memory module is also employed to model temporal dependencies. By treating heart rate variability as a surrogate for physiological fluctuations, we evaluated IKrNet's performance across diverse scenarios, including conditions with physical stress, drug intake alone, and a baseline without drug presence. Our assessment follows a clinical protocol in which 990 healthy volunteers were administered 80mg of Sotalol, a drug which is known to be a precursor to Torsades-de-Pointes, a life-threatening arrhythmia. We show that IKrNet outperforms state-of-the-art models' accuracy and stability in varying physiological conditions, underscoring its clinical viability.
View blog
Resources
There are no more papers matching your filters at the moment.