BASIS Independent Silicon Valley
Adaptive Coopetition (AdCo) is a multi-agent LLM reasoning framework that adaptively guides collaboration and competition among agents using coarse verifier signals. AdCo achieves up to 54% accuracy on the DeepMath-103K dataset, representing a 20% relative improvement over baselines, while maintaining high stability and effectively mitigating reasoning collapse.
3D Gaussian Splatting (3DGS) enables real-time novel view synthesis with high visual fidelity, but its substantial storage requirements hinder practical deployment, prompting state-of-the-art (SOTA) 3DGS methods to incorporate compression modules. However, these 3DGS generative compression techniques introduce unique distortions lacking systematic quality assessment research. To this end, we establish 3DGS-VBench, a large-scale Video Quality Assessment (VQA) Dataset and Benchmark with 660 compressed 3DGS models and video sequences generated from 11 scenes across 6 SOTA 3DGS compression algorithms with systematically designed parameter levels. With annotations from 50 participants, we obtained MOS scores with outlier removal and validated dataset reliability. We benchmark 6 3DGS compression algorithms on storage efficiency and visual quality, and evaluate 15 quality assessment metrics across multiple paradigms. Our work enables specialized VQA model training for 3DGS, serving as a catalyst for compression and quality assessment research. The dataset is available at this https URL.
The segmentation of diseases is a popular topic explored by researchers in the field of machine learning. Brain tumors are extremely dangerous and require the utmost precision to segment for a successful surgery. Patients with tumors usually take 4 MRI scans, T1, T1gd, T2, and FLAIR, which are then sent to radiologists to segment and analyze for possible future surgery. To create a second segmentation, it would be beneficial to both radiologists and patients in being more confident in their conclusions. We propose using a method performed by radiologists called image segmentation and applying it to machine learning models to prove a better segmentation. Using Mask R-CNN, its ResNet backbone being pre-trained on the RSNA pneumonia detection challenge dataset, we can train a model on the Brats2020 Brain Tumor dataset. Center for Biomedical Image Computing & Analytics provides MRI data on patients with and without brain tumors and the corresponding segmentations. We can see how well the method of image subtraction works by comparing it to models without image subtraction through DICE coefficient (F1 score), recall, and precision on the untouched test set. Our model performed with a DICE coefficient of 0.75 in comparison to 0.69 without image subtraction. To further emphasize the usefulness of image subtraction, we compare our final model to current state-of-the-art models to segment tumors from MRI scans.
There are no more papers matching your filters at the moment.