BigHat Biosciences
Is Sequence Information All You Need for Bayesian Optimization of Antibodies?
Bayesian optimization is a natural candidate for the engineering of antibody therapeutic properties, which is often iterative and expensive. However, finding the optimal choice of surrogate model for optimization over the highly structured antibody space is difficult, and may differ depending on the property being optimized. Moreover, to the best of our knowledge, no prior works have attempted to incorporate structural information into antibody Bayesian optimization. In this work, we explore different approaches to incorporating structural information into Bayesian optimization, and compare them to a variety of sequence-only approaches on two different antibody properties, binding affinity and stability. In addition, we propose the use of a protein language model-based ``soft constraint,'' which helps guide the optimization to promising regions of the space. We find that certain types of structural information improve data efficiency in early optimization rounds for stability, but have equivalent peak performance. Moreover, when incorporating the protein language model soft constraint we find that the data efficiency gap is diminished for affinity and eliminated for stability, resulting in sequence-only methods that match the performance of structure-based methods, raising questions about the necessity of structure in Bayesian optimization for antibodies.
View blog
Resources
Improved Therapeutic Antibody Reformatting through Multimodal Machine Learning
Modern therapeutic antibody design often involves composing multi-part assemblages of individual functional domains, each of which may be derived from a different source or engineered independently. While these complex formats can expand disease applicability and improve safety, they present a significant engineering challenge: the function and stability of individual domains are not guaranteed in the novel format, and the entire molecule may no longer be synthesizable. To address these challenges, we develop a machine learning framework to predict "reformatting success" -- whether converting an antibody from one format to another will succeed or not. Our framework incorporates both antibody sequence and structural context, incorporating an evaluation protocol that reflects realistic deployment scenarios. In experiments on a real-world antibody reformatting dataset, we find the surprising result that large pretrained protein language models (PLMs) fail to outperform simple, domain-tailored, multimodal representations. This is particularly evident in the most difficult evaluation setting, where we test model generalization to a new starting antibody. In this challenging "new antibody, no data" scenario, our best multimodal model achieves high predictive accuracy, enabling prioritization of promising candidates and reducing wasted experimental effort.
View blog
Resources
Accelerating Bayesian Optimization for Biological Sequence Design with Denoising Autoencoders
Bayesian optimization (BayesOpt) is a gold standard for query-efficient continuous optimization. However, its adoption for drug design has been hindered by the discrete, high-dimensional nature of the decision variables. We develop a new approach (LaMBO) which jointly trains a denoising autoencoder with a discriminative multi-task Gaussian process head, allowing gradient-based optimization of multi-objective acquisition functions in the latent space of the autoencoder. These acquisition functions allow LaMBO to balance the explore-exploit tradeoff over multiple design rounds, and to balance objective tradeoffs by optimizing sequences at many different points on the Pareto frontier. We evaluate LaMBO on two small-molecule design tasks, and introduce new tasks optimizing \emph{in silico} and \emph{in vitro} properties of large-molecule fluorescent proteins. In our experiments LaMBO outperforms genetic optimizers and does not require a large pretraining corpus, demonstrating that BayesOpt is practical and effective for biological sequence design.
View blog
Resources
Bayesian Optimization of Antibodies Informed by a Generative Model of Evolving Sequences
10 Dec 2024

CloneBO proposes a method for efficiently optimizing antibody sequences by integrating a generative language model trained on natural clonal family evolution with Bayesian optimization. This approach yields antibodies with superior binding affinity and thermostability in wet lab experiments while requiring fewer experimental cycles compared to existing methods.

View blog
Resources
Unmasking Trees for Tabular Data
23 Jul 2025

Researchers developed UnmaskingTrees, an autoregressive framework using gradient-boosted decision trees and a novel probabilistic prediction method called BaltoBot, for tabular data imputation and generation. This method achieved leading performance in imputation and state-of-the-art results for generation with missingness, offering efficient sampling and closed-form density estimation for continuous and mixed-type data.

View blog
Resources
Guided Sequence-Structure Generative Modeling for Iterative Antibody Optimization
Therapeutic antibody candidates often require extensive engineering to improve key functional and developability properties before clinical development. This can be achieved through iterative design, where starting molecules are optimized over several rounds of in vitro experiments. While protein structure can provide a strong inductive bias, it is rarely used in iterative design due to the lack of structural data for continually evolving lead molecules over the course of optimization. In this work, we propose a strategy for iterative antibody optimization that leverages both sequence and structure as well as accumulating lab measurements of binding and developability. Building on prior work, we first train a sequence-structure diffusion generative model that operates on antibody-antigen complexes. We then outline an approach to use this model, together with carefully predicted antibody-antigen complexes, to optimize lead candidates throughout the iterative design process. Further, we describe a guided sampling approach that biases generation toward desirable properties by integrating models trained on experimental data from iterative design. We evaluate our approach in multiple in silico and in vitro experiments, demonstrating that it produces high-affinity binders at multiple stages of an active antibody optimization campaign.
View blog
Resources
Generative Humanization for Therapeutic Antibodies
Antibody therapies have been employed to address some of today's most challenging diseases, but must meet many criteria during drug development before reaching a patient. Humanization is a sequence optimization strategy that addresses one critical risk called immunogenicity - a patient's immune response to the drug - by making an antibody more "human-like" in the absence of a predictive lab-based test for immunogenicity. However, existing humanization strategies generally yield very few humanized candidates, which may have degraded biophysical properties or decreased drug efficacy. Here, we re-frame humanization as a conditional generative modeling task, where humanizing mutations are sampled from a language model trained on human antibody data. We describe a sampling process that incorporates models of therapeutic attributes, such as antigen binding affinity, to obtain candidate sequences that have both reduced immunogenicity risk and maintained or improved therapeutic properties, allowing this algorithm to be readily embedded into an iterative antibody optimization campaign. We demonstrate in silico and in lab validation that in real therapeutic programs our generative humanization method produces diverse sets of antibodies that are both (1) highly-human and (2) have favorable therapeutic properties, such as improved binding to target antigens.
View blog
Resources
What is missing in autonomous discovery: Open challenges for the community
Self-driving labs (SDLs) leverage combinations of artificial intelligence, automation, and advanced computing to accelerate scientific discovery. The promise of this field has given rise to a rich community of passionate scientists, engineers, and social scientists, as evidenced by the development of the Acceleration Consortium and recent Accelerate Conference. Despite its strengths, this rapidly developing field presents numerous opportunities for growth, challenges to overcome, and potential risks of which to remain aware. This community perspective builds on a discourse instantiated during the first Accelerate Conference, and looks to the future of self-driving labs with a tempered optimism. Incorporating input from academia, government, and industry, we briefly describe the current status of self-driving labs, then turn our attention to barriers, opportunities, and a vision for what is possible. Our field is delivering solutions in technology and infrastructure, artificial intelligence and knowledge generation, and education and workforce development. In the spirit of community, we intend for this work to foster discussion and drive best practices as our field grows.
View blog
Resources
There are no more papers matching your filters at the moment.