CVision AI
FathomVerse introduces a gamified community science platform and dataset (FathomVerse v0) for annotating deep-sea animals, successfully generating high-quality image labels with 0.93 precision and 0.83 recall from community contributions. The dataset exposes significant limitations in existing object detection models regarding domain adaptation and fine-grained classification within challenging deep-sea environments.
Ocean scientists have been collecting visual data to study marine organisms for decades. These images and videos are extremely valuable both for basic science and environmental monitoring tasks. There are tools for automatically processing these data, but none that are capable of handling the extreme variability in sample populations, image quality, and habitat characteristics that are common in visual sampling of the ocean. Such distribution shifts can occur over very short physical distances and in narrow time windows. Creating models that are able to recognize when an image or video sequence contains a new organism, an unusual collection of animals, or is otherwise out-of-sample is critical to fully leverage visual data in the ocean. The FathomNet2023 competition dataset presents a realistic scenario where the set of animals in the target data differs from the training data. The challenge is both to identify the organisms in a target image and assess whether it is out-of-sample.
Can computer vision help us explore the ocean? The ultimate challenge for computer vision is to recognize any visual phenomena, more than only the objects and animals humans encounter in their terrestrial lives. Previous datasets have explored everyday objects and fine-grained categories humans see frequently. We present the FathomVerse v0 detection dataset to push the limits of our field by exploring animals that rarely come in contact with people in the deep sea. These animals present a novel vision challenge. The FathomVerse v0 dataset consists of 3843 images with 8092 bounding boxes from 12 distinct morphological groups recorded at two locations on the deep seafloor that are new to computer vision. It features visually perplexing scenarios such as an octopus intertwined with a sea star, and confounding categories like vampire squids and sea spiders. This dataset can push forward research on topics like fine-grained transfer learning, novel category discovery, species distribution modeling, and carbon cycle analysis, all of which are important to the care and husbandry of our planet.
There are no more papers matching your filters at the moment.