Centre de Recherche en Informatique de Lens
Within the formal setting of the Lockean thesis, an agent belief set is defined in terms of degrees of confidence and these are described in probabilistic terms. This approach is of established interest, notwithstanding some limitations that make its use troublesome in some contexts, like, for instance, in belief change theory. Precisely, Lockean belief sets are not generally closed under (classical) logical deduction. The aim of the present paper is twofold: on one side we provide two characterizations of those belief sets that are closed under classical logic deduction, and on the other we propose an approach to probabilistic update that allows us for a minimal revision of those beliefs, i.e., a revision obtained by making the fewest possible changes to the existing belief set while still accommodating the new information. In particular, we show how we can deductively close a belief set via a minimal revision.
Many of the famous single-player games, commonly called puzzles, can be shown to be NP-Complete. Indeed, this class of complexity contains hundreds of puzzles, since people particularly appreciate completing an intractable puzzle, such as Sudoku, but also enjoy the ability to check their solution easily once it's done. For this reason, using constraint programming is naturally suited to solve them. In this paper, we focus on logic puzzles described in the Ludii general game system and we propose using the XCSP formalism in order to solve them with any CSP solver.
Counting the number of answers to conjunctive queries is a fundamental problem in databases that, under standard assumptions, does not have an efficient solution. The issue is inherently #P-hard, extending even to classes of acyclic instances. To address this, we pinpoint tractable classes by examining the structural properties of instances and introducing the novel concept of #-hypertree decomposition. We establish the feasibility of counting answers in polynomial time for classes of queries featuring bounded #-hypertree width. Additionally, employing novel techniques from the realm of fixed-parameter computational complexity, we prove that, for bounded arity queries, the bounded #-hypertree width property precisely delineates the frontier of tractability for the counting problem. This result closes an important gap in our understanding of the complexity of such a basic problem for conjunctive queries and, equivalently, for constraint satisfaction problems (CSPs). Drawing upon #-hypertree decompositions, a ''hybrid'' decomposition method emerges. This approach leverages both the structural characteristics of the query and properties intrinsic to the input database, including keys or other (weaker) degree constraints that limit the permissible combinations of values. Intuitively, these features may introduce distinct structural properties that elude identification through the ''worst-possible database'' perspective inherent in purely structural methods.
This work reviews how database theory uses tractable circuit classes from knowledge compilation. We present relevant query evaluation tasks, and notions of tractable circuits. We then show how these tractable circuits can be used to address database tasks. We first focus on Boolean provenance and its applications for aggregation tasks, in particular probabilistic query evaluation. We study these for Monadic Second Order (MSO) queries on trees, and for safe Conjunctive Queries (CQs) and Union of Conjunctive Queries (UCQs). We also study circuit representations of query answers, and their applications to enumeration tasks: both in the Boolean setting (for MSO) and the multivalued setting (for CQs and UCQs).
There are no more papers matching your filters at the moment.