Centro Brasileiro de Pesquisas Físicas - CBPF
CNRS logoCNRSUniversity of New South WalesINFN Sezione di NapoliMonash University logoMonash UniversityUniversity of Manchester logoUniversity of ManchesterUniversity of Chicago logoUniversity of ChicagoUniversity of Oxford logoUniversity of Oxfordthe University of Tokyo logothe University of TokyoNagoya University logoNagoya UniversityKyoto University logoKyoto UniversityETH Zürich logoETH ZürichRIKEN logoRIKENUniversidade de LisboaINFN Sezione di PisaUniversity of InnsbruckWeizmann Institute of ScienceUniversité Paris-Saclay logoUniversité Paris-SaclayFriedrich-Alexander-Universität Erlangen-NürnbergSorbonne Université logoSorbonne UniversitéInstitut Polytechnique de ParisMacquarie UniversityCEA logoCEAUniversity of GenevaDublin City UniversityHumboldt-Universität zu BerlinUniversitat de BarcelonaUniversidade Federal do ABCHigh Energy Accelerator Research Organization (KEK)University of LeicesterUniversity of DelawareUniversidad Complutense de MadridNicolaus Copernicus Astronomical Center, Polish Academy of SciencesObservatoire de ParisHiroshima UniversityUniversity of JohannesburgNational Institute of Technology, DurgapurUniversidad Nacional Autónoma de MéxicoJagiellonian UniversityInstituto de Astrofísica de CanariasGran Sasso Science Institute (GSSI)Universidad de ChileUniversidade de São PauloUniversität HamburgRuđer Bošković InstituteWaseda University logoWaseda UniversityUniversity of AdelaideUniversitat Autònoma de BarcelonaCNESINFN, Sezione di TorinoPontificia Universidad Católica de ChileUniversidade Federal de Santa CatarinaTechnische Universität DortmundPSL Research UniversityUniversidad de La LagunaUniversity of Hawaii at ManoaJosip Juraj Strossmayer University of OsijekUniversità degli Studi di SienaMax-Planck-Institut für PhysikINAF – Istituto di Astrofisica Spaziale e Fisica Cosmica MilanoLaboratoire d’Astrophysique de MarseilleINFN Sezione di PerugiaINAF-Istituto di RadioastronomiaInstituto de Astrofísica de Andalucía, IAA-CSICINAF – Osservatorio Astronomico di RomaWestern Sydney UniversityLAPPFZU - Institute of Physics of the Czech Academy of SciencesINFN - Sezione di PadovaKumamoto UniversityIJCLabNational Academy of Sciences of UkraineUniversity of DurhamINAF- Osservatorio Astronomico di CagliariUniversity of NamibiaKing Mongkut’s Institute of Technology LadkrabangUniversidad de GuadalajaraUniversidade Presbiteriana MackenzieLaboratoire Univers et Particules de MontpellierLaboratoire Leprince-RinguetPalacký UniversityCentro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT)INFN, Sezione di CataniaINFN Sezione di RomaLPNHEYerevan Physics InstituteINFN Sezione di Roma Tor VergataAIMIFAEKavli Institute for the Physics and Mathematics of the Universe (WPI),Universidad Metropolitana de Ciencias de la EducaciónUniversità degli Studi di Bari Aldo MoroInstitut de Ciències del Cosmos (ICCUB)Centro Brasileiro de Pesquisas Físicas - CBPFAstroparticule et Cosmologie (APC)Open University of IsraelAstronomical Institute, Czech Academy of SciencesInstituto de Física de Partículas y del Cosmos IPARCOSInstituto de Física de São CarlosIEEC-UBLaboratoire APCINFN (Sezione di Bari)University of WitswatersrandCentre d'Etudes Nucléaires de Bordeaux GradignanINFN Sezione di UdineMPI für Kernphysik* North–West UniversityINFN-Sezione di Roma TreUniversit de ParisINAF Osservatorio Astronomico di CapodimonteMax Planck Institut fr AstronomieAix-Marseille Universit",Universit de BordeauxUniversit Savoie Mont BlancUniversit Paris CitINAF Osservatorio Astrofisico di ArcetriUniversit de MontpellierUniversit degli Studi di TorinoTechnion Israel Institute of Technologycole Polytechnique
Galaxy clusters are expected to be dark matter (DM) reservoirs and storage rooms for the cosmic-ray protons (CRp) that accumulate along the cluster's formation history. Accordingly, they are excellent targets to search for signals of DM annihilation and decay at gamma-ray energies and are predicted to be sources of large-scale gamma-ray emission due to hadronic interactions in the intracluster medium. We estimate the sensitivity of the Cherenkov Telescope Array (CTA) to detect diffuse gamma-ray emission from the Perseus galaxy cluster. We perform a detailed spatial and spectral modelling of the expected signal for the DM and the CRp components. For each, we compute the expected CTA sensitivity. The observing strategy of Perseus is also discussed. In the absence of a diffuse signal (non-detection), CTA should constrain the CRp to thermal energy ratio within the radius R500R_{500} down to about $X_{500}<3\times 10^{-3}$, for a spatial CRp distribution that follows the thermal gas and a CRp spectral index αCRp=2.3\alpha_{\rm CRp}=2.3. Under the optimistic assumption of a pure hadronic origin of the Perseus radio mini-halo and depending on the assumed magnetic field profile, CTA should measure αCRp\alpha_{\rm CRp} down to about ΔαCRp0.1\Delta\alpha_{\rm CRp}\simeq 0.1 and the CRp spatial distribution with 10% precision. Regarding DM, CTA should improve the current ground-based gamma-ray DM limits from clusters observations on the velocity-averaged annihilation cross-section by a factor of up to 5\sim 5, depending on the modelling of DM halo substructure. In the case of decay of DM particles, CTA will explore a new region of the parameter space, reaching models with \tau_{\chi}&gt;10^{27}s for DM masses above 1 TeV. These constraints will provide unprecedented sensitivity to the physics of both CRp acceleration and transport at cluster scale and to TeV DM particle models, especially in the decay scenario.
Post-adiabatic models of extreme- and intermediate-mass-ratio inspirals will require calculations of second-order gravitational self-force effects in the spacetime of a spinning, Kerr black hole. We take a step toward such calculations by implementing the recently formulated Teukolsky puncture scheme with Green-Hollands-Zimmerman metric reconstruction [CQG 39, 015019 (2022)]. This scheme eliminates the critical obstacle of gauge singularities that arise in the standard no-string metric reconstruction. Our first proof-of-principle implementation is limited to the simple case of circular orbits in Schwarzschild spacetime, but the method also applies to generic orbits on a Kerr background. We conclude with a discussion of various approaches to the second-order self-force problem in Kerr.
Axion-like particles (ALPs) are pseudo-Nambu-Goldstone bosons that emerge in various theories beyond the standard model. These particles can interact with high-energy photons in external magnetic fields, influencing the observed gamma-ray spectrum. This study analyzes 41.3 hrs of observational data from the Perseus Galaxy Cluster collected with the MAGIC telescopes. We focused on the spectra the radio galaxy in the center of the cluster: NGC 1275. By modeling the magnetic field surrounding this target, we searched for spectral indications of ALP presence. Despite finding no statistical evidence of ALP signatures, we were able to exclude ALP models in the sub-micro electronvolt range. Our analysis improved upon previous work by calculating the full likelihood and statistical coverage for all considered models across the parameter space. Consequently, we achieved the most stringent limits to date for ALP masses around 50 neV, with cross sections down to $g_{a\gamma} = 3 \times 10^{-12}GeV GeV^{-1}$.
The retarded Green function of a wave equation on a 4-dimensional curved background spacetime is a (generalized) function of two spacetime points and diverges when these are connected by a null geodesic. The Hadamard form makes explicit the form of this divergence but only when one of the points is in a normal neighbourhood of the other point. In this paper we derive a representation for the retarded Green function for a scalar field in Schwarzschild spacetime which makes explicit its {\it complete} singularity structure beyond the normal neighbourhood. We interpret this representation as a sum of Hadamard forms, the summation being taken over the number of times the null wavefront has passed through a caustic point: the sum of Hadamard forms applies to the non-smooth contribution to the full Green function, not only the singular contribution. (The term non-smooth applies modulo the causality-generating step functions that must appear in the retarded Green function.) The singularity structure is determined using two independent approaches, one based on a Bessel function expansion of the Green function, and another that exploits a link between the Green functions of Schwarzschild spacetime and Pleba{ń}ski-Hacyan spacetime (the latter approach also yields another representation for the {\it full} Schwarzschild Green function, not just for its non-smooth part). Our representation is not valid in a neighbourhood of caustic points. We deal with these points by providing a separate representation for the Green function in Schwarzschild spacetime which makes explicit its (different) singularity structure at caustics of this spacetime.
The retarded Green function of a wave equation on a 4-dimensional curved background spacetime is a (generalized) function of two spacetime points and diverges when these are connected by a null geodesic. The Hadamard form makes explicit the form of this divergence but only when one of the points is in a normal neighbourhood of the other point. In this paper we derive a representation for the retarded Green function for a scalar field in Schwarzschild spacetime which makes explicit its {\it complete} singularity structure beyond the normal neighbourhood. We interpret this representation as a sum of Hadamard forms, the summation being taken over the number of times the null wavefront has passed through a caustic point: the sum of Hadamard forms applies to the non-smooth contribution to the full Green function, not only the singular contribution. (The term non-smooth applies modulo the causality-generating step functions that must appear in the retarded Green function.) The singularity structure is determined using two independent approaches, one based on a Bessel function expansion of the Green function, and another that exploits a link between the Green functions of Schwarzschild spacetime and Pleba{ń}ski-Hacyan spacetime (the latter approach also yields another representation for the {\it full} Schwarzschild Green function, not just for its non-smooth part). Our representation is not valid in a neighbourhood of caustic points. We deal with these points by providing a separate representation for the Green function in Schwarzschild spacetime which makes explicit its (different) singularity structure at caustics of this spacetime.
Quantum computing, along with quantum metrology and quantum communication, are disruptive technologies that promise, in the near future, to impact different sectors of academic research and industry. Among the computational challenges with great interest in science and industry are the inversion problems. These kinds of numerical procedures can be described as the process of determining the cause of an event from measurements of its effects. In this paper, we apply a recursive quantum algorithm to a D-Wave quantum annealer to solve a small scale seismic inversions problem. We compare the obtained results from the quantum computer to those derived from a classical algorithm. The accuracy achieved by the quantum computer is at least as good as that of the classical computer.
The open question of whether a black hole can become tidally deformed by an external gravitational field has profound implications for fundamental physics, astrophysics and gravitational-wave astronomy. Love tensors characterize the tidal deformability of compact objects such as astrophysical (Kerr) black holes under an external static tidal field. We prove that all Love tensors vanish identically for a Kerr black hole in the nonspinning limit or for an axisymmetric tidal perturbation. In contrast to this result, we show that Love tensors are generically nonzero for a spinning black hole. Specifically, to linear order in the Kerr black hole spin and the weak perturbing tidal field, we compute in closed form the Love tensors that couple the mass-type and current-type quadrupole moments to the electric-type and magnetic-type quadrupolar tidal fields. For a dimensionless spin ~ 0.1, the nonvanishing quadrupolar Love tensors are ~ 0.002, thus showing that black holes are particularly "rigid" compact objects.
Starburst galaxies and star-forming active galactic nuclei (AGN) are among the candidate sources thought to contribute appreciably to the extragalactic gamma-ray and neutrino backgrounds. NGC 1068 is the brightest of the star-forming galaxies found to emit gamma rays from 0.1 to 50 GeV. Precise measurements of the high-energy spectrum are crucial to study the particle accelerators and probe the dominant emission mechanisms. We have carried out 125 hours of observations of NGC 1068 with the MAGIC telescopes in order to search for gamma-ray emission in the very high energy band. We did not detect significant gamma-ray emission, and set upper limits at 95\% confidence level to the gamma-ray flux above 200 GeV f<5.1x10^{-13} cm^{-2} s ^{-1} . This limit improves previous constraints by about an order of magnitude and allows us to put tight constraints on the theoretical models for the gamma-ray emission. By combining the MAGIC observations with the Fermi-LAT spectrum we limit the parameter space (spectral slope, maximum energy) of the cosmic ray protons predicted by hadronuclear models for the gamma-ray emission, while we find that a model postulating leptonic emission from a semi-relativistic jet is fully consistent with the limits. We provide predictions for IceCube detection of the neutrino signal foreseen in the hadronic scenario. We predict a maximal IceCube neutrino event rate of 0.07 yr^{-1}.
We investigate the dynamics of a classical mechanical oscillator coupled to the simplest quantum system, a single qubit. The qubit's influence manifests as deterministic and stochastic forces, highly dependent on its initial quantum state, imprinting unique measurable quantum-induced signatures onto the oscillator's response. The present results suggest a pathway to quantum state reconstruction through classical noise spectroscopy, with potential applications to mesoscopic optomechanical experiments, quantum metrology, and tabletop tests of the quantum nature of gravity.
An accurate velocity model is essential to make a good seismic image. Conventional methods to perform Velocity Model Building (VMB) tasks rely on inverse methods, which, despite being widely used, are ill-posed problems that require intense and specialized human supervision. Convolutional Neural Networks (CNN) have been extensively investigated as an alternative to solve the VMB task. Two main approaches were investigated in the literature: supervised training and Physics-Informed Neural Networks (PINN). Supervised training presents some generalization issues since structures, and velocity ranges must be similar in training and test set. Some works integrated Full-waveform Inversion (FWI) with CNN, defining the problem of VMB in the PINN framework. In this case, the CNN stabilizes the inversion, acting like a regularizer and avoiding local minima-related problems and, in some cases, sparing an initial velocity model. Our approach combines supervised and physics-informed neural networks by using transfer learning to start the inversion. The pre-trained CNN is obtained using a supervised approach based on training with a reduced and simple data set to capture the main velocity trend at the initial FWI iterations. We show that transfer learning reduces the uncertainties of the process, accelerates model convergence, and improves the final scores of the iterative process.
Radioactivity is understood to be described by a Poisson process, yet some measurements of nuclear decays appear to exhibit unexpected variations. Generally, the isotopes reporting these variations have long half lives, which are plagued by large measurement uncertainties. In addition to these inherent problems, there are some reports of time-dependent decay rates and even claims of exotic neutrino-induced variations. We present a dedicated experiment for the stable long-term measurement of gamma emissions resulting from β\beta decays, which will provide high-quality data and allow for the identification of potential systematic influences. Radioactive isotopes are monitored redundantly by thirty-two 76 mm ×\times 76 mm NaI(Tl) detectors in four separate temperature-controlled setups across three continents. In each setup, the monitoring of environmental and operational conditions facilitates correlation studies. The deadtime-free performance of the data acquisition system is monitored by LED pulsers. Digitized photomultiplier waveforms of all events are recorded individually, enabling a study of time-dependent effects spanning microseconds to years, using both time-binned and unbinned analyses. We characterize the experiment's stability and show that the relevant systematics are accounted for, enabling precise measurements of effects at levels well below O(104)\mathcal{O}(10^{-4}).
Using results from the theory of dynamical systems, we derive a general expression for the classical average scattering dwell time, tau_av. Remarkably, tau_av depends only on a ratio of phase space volumes. We further show that, for a wide class of systems, the average classical dwell time is not in correspondence with the energy average of the quantum Wigner time delay.
We perform in this work an analysis of the background dynamics for α\alpha-attractor models in the context of loop quantum cosmology. Particular attention is given to the determination of the duration of the inflationary phase that is preceded by the quantum bounce in these models. From an analysis of the general predictions for these models, it is shown that we can be able to put constraints in the parameter α\alpha of the potentials and also on the quantum model itself, especially the Barbero-Immirzi parameter. In particular, the constraints on the tensor-to-scalar ratio and spectral tilt of the cosmological perturbations limit the α\alpha parameter of the potentials to values such that αn=010\alpha_{n=0} \lesssim 10, αn=117\alpha_{n=1} \lesssim 17 and αn=267\alpha_{n=2} \lesssim 67, for the α\alpha attractors T, E, and n=2n=2 models, respectively. Using the constraints on the minimal amount of e-folds of expansion from the quantum bounce up to the end of inflation leads to the upper bounds for the Barbero-Immirzi parameter for the α\alpha-attractor models studied in this work: γn=051.2\gamma_{n=0} \lesssim 51.2, γn=163.4\gamma_{n=1}\lesssim 63.4 and γn=264.2\gamma_{n=2} \lesssim 64.2, which are obtained when fixing the parameter α\alpha in the potential at the values saturating the upper bounds given above for each model.
This proposal outlines the future plans of the Brazilian High-Energy Physics (HEP) community for upcoming collider experiments. With the construction of new particle colliders on the horizon and the ongoing operation of the High-Luminosity LHC, several research groups in Brazil have put forward technical proposals, covering both hardware and software contributions, as part of the Brazilian contribution to the global effort. The primary goal remains to foster a unified effort within the Brazilian HEP community, optimizing resources and expertise to deliver a high-impact contribution to the international HEP community.
We propose a new cosmological paradigm in which our observed expanding phase is originated from an initially large contracting Universe that subsequently experienced a bounce. This category of models, being geodesically complete, is non-singular and horizon-free, and can be made to prevent any relevant scale to ever have been smaller than the Planck length. In this scenario, one can find new ways to solve the standard cosmological puzzles. One can also obtain scale invariant spectra for both scalar and tensor perturbations: this will be the case, for instance, if the contracting Universe is dust-dominated at the time at which large wavelength perturbations get larger than the curvature scale. We present a particular example based on a dust fluid classically contracting model, where a bounce occurs due to quantum effects, in which these features are explicit.
Critical Casimir effect appears when critical fluctuations of an order parameter interact with classical boundaries. We investigate this effect in the setting of a Landau-Ginzburg model with continuous symmetry in the presence of quenched disorder. The quenched free energy is written as an asymptotic series of moments of the models partition function. Our main result is that, in the presence of a strong disorder, Goldstone modes of the system contribute either with an attractive or with a repulsive force. This result was obtained using the distributional zeta-function method without relying on any particular ansatz in the functional space of the moments of the partition function.
The spacetime of a boosted Bondi-Sachs rotating black hole is considered as a proper background to examine electromagnetic configurations connected to analytic solutions of Maxwell equations. In our analysis, we first use the Bondi-Sachs transformations in order to bring the boosted rotating black hole metric into the Kerr-Schild form, from which zero angular momentum observers (ZAMOs) are constructed via the ADM formalism. In Kerr-Schild coordinates we obtain the Killing fields as sources of Maxwell electrodynamics, and we fix a ZAMO in order to evaluate the components of the electric and magnetic fields, from which we obtain nonsingular patterns of an eventual momentum-energy emission of a boosted Kerr-Schild black hole. Distinct patterns are examined and discussed in the case of variations of the boost parameter γ\gamma. We extend our analysis by considering the nonsingular electromagnetic emission in the framework of a boosted Bondi-Sachs rotating black hole, as it moves at relativistic speeds. We also discuss possible mechanisms that may resemble magnetospheres of rotating boosted black holes and give rise to hydromagnetic flows from accretion discs and to the production of jets.
The mechanisms producing fast variability of the γ\gamma-ray emission in active galactic nuclei are under debate. The MAGIC telescopes detected a fast very high energy (VHE, E>100>100 GeV) γ\gamma-ray flare from BL Lacertae on 2015 June 15. The flare had a maximum flux of (1.5±0.3)×1010(1.5\pm 0.3)\times 10^{-10} photons cm2^{-2} s1^{-1} and halving time of 26±826\pm8 minutes. The MAGIC observations were triggered by a high state in the optical and high energy (HE, E>100>100 MeV) γ\gamma-ray bands. In this paper we present the MAGIC VHE γ\gamma-ray data together with multiwavelength data from radio, optical, X-rays, and HE γ\gamma rays from 2015 May 1 to July 31. Well-sampled multiwavelength data allow us to study the variability in detail and compare it to the other epochs when fast VHE γ\gamma-ray flares have been detected from this source. Interestingly, we find that the behaviour in radio, optical, X-rays and HE γ\gamma-rays is very similar to two other observed VHE γ\gamma-ray flares. In particular, also during this flare there was an indication of rotation of the optical polarization angle and of activity at the 43\,GHz core. These repeating patterns indicate a connection between the three events. We also test modelling of the spectral energy distribution, based on constraints from the light curves and VLBA observations, with two different geometrical setups of two-zone inverse Compton models. In addition we model the γ\gamma-ray data with the star-jet interaction model. We find that all of the tested emission models are compatible with the fast VHE γ\gamma-ray flare, but all have some tension with the multiwavelength observations.
The accurate and fast estimation of velocity models is crucial in seismic imaging. Conventional methods, like Tomography and Full-Waveform Inversion (FWI), obtain appropriate velocity models; however, they require intense and specialized human supervision and consume much time and computational resources. In recent years, some works investigated deep learning(DL) algorithms to obtain the velocity model directly from shots or migrated angle panels, obtaining encouraging predictions of synthetic models. This paper proposes a new flow to increase the complexity of velocity models recovered with DL. Inspired by the conventional geophysical velocity model building methods, instead of predicting the entire model in one step, we predict the velocity model iteratively. We implement the iterative nature of the process when, for each iteration, we train the DL algorithm to determine the velocity model with a certain level of precision/resolution for the next iteration; we name this process as Deep-Tomography. Starting from an initial model that roughly approaches the true model, the Deep-Tomography is able to predict an appropriate final model, even in complete unseen data, like the Marmousi model.
The dwarf spheroidal galaxy Ursa Major II (UMaII) is believed to be one of the most dark-matter dominated systems among the Milky Way satellites and represents a suitable target for indirect dark matter (DM) searches. The MAGIC telescopes carried out a deep observation campaign on UMaII between 2014 and 2016, collecting almost one hundred hours of good-quality data. This campaign enlarges the pool of DM targets observed at very high energy (E\gtrsim50GeV) in search for signatures of dark matter annihilation in the wide mass range between \sim100 GeV and \sim100 TeV. To this end, the data are analyzed with the full likelihood analysis, a method based on the exploitation of the spectral information of the recorded events for an optimal sensitivity to the explored dark matter models. We obtain constraints on the annihilation cross-section for different channels that are among the most robust and stringent achieved so far at the TeV mass scale from observations of dwarf satellite galaxies.
There are no more papers matching your filters at the moment.