Chinese Medicine Guangdong Laboratory
WorldGenBench introduces a comprehensive evaluation framework for text-to-image models that specifically tests their ability to integrate world knowledge and perform implicit reasoning, combining structured knowledge checklists with domain-specific prompts across Humanities and Nature categories to reveal significant gaps between current open-source and proprietary models.
Large language models (LLMs) primarily trained on English texts, often face biases and inaccuracies in Chinese contexts. Their limitations are pronounced in fields like Traditional Chinese Medicine (TCM), where cultural and clinical subtleties are vital, further hindered by a lack of domain-specific data, such as rheumatoid arthritis (RA). To address these issues, this paper introduces Hengqin-RA-v1, the first large language model specifically tailored for TCM with a focus on diagnosing and treating RA. We also present HQ-GCM-RA-C1, a comprehensive RA-specific dataset curated from ancient Chinese medical literature, classical texts, and modern clinical studies. This dataset empowers Hengqin-RA-v1 to deliver accurate and culturally informed responses, effectively bridging the gaps left by general-purpose models. Extensive experiments demonstrate that Hengqin-RA-v1 outperforms state-of-the-art models, even surpassing the diagnostic accuracy of TCM practitioners in certain cases.
Medical report generation requires specialized expertise that general large models often fail to accurately capture. Moreover, the inherent repetition and similarity in medical data make it difficult for models to extract meaningful features, resulting in a tendency to overfit. So in this paper, we propose a multimodal model, Co-Attention Triple-LSTM Network (CA-TriNet), a deep learning model that combines transformer architectures with a Multi-LSTM network. Its Co-Attention module synergistically links a vision transformer with a text transformer to better differentiate medical images with similarities, augmented by an adaptive weight operator to catch and amplify image labels with minor similarities. Furthermore, its Triple-LSTM module refines generated sentences using targeted image objects. Extensive evaluations over three public datasets have demonstrated that CA-TriNet outperforms state-of-the-art models in terms of comprehensive ability, even pre-trained large language models on some metrics.
There are no more papers matching your filters at the moment.