Clermont University
In Multiple Instance Learning (MIL) problem for sequence data, the instances inside the bags are sequences. In some real world applications such as bioinformatics, comparing a random couple of sequences makes no sense. In fact, each instance may have structural and/or functional relations with instances of other bags. Thus, the classification task should take into account this across bag relation. In this work, we present two novel MIL approaches for sequence data classification named ABClass and ABSim. ABClass extracts motifs from related instances and use them to encode sequences. A discriminative classifier is then applied to compute a partial classification result for each set of related sequences. ABSim uses a similarity measure to discriminate the related instances and to compute a scores matrix. For both approaches, an aggregation method is applied in order to generate the final classification result. We applied both approaches to solve the problem of bacterial Ionizing Radiation Resistance prediction. The experimental results of the presented approaches are satisfactory.
Big graph mining is an important research area and it has attracted considerable attention. It allows to process, analyze, and extract meaningful information from large amounts of graph data. Big graph mining has been highly motivated not only by the tremendously increasing size of graphs but also by its huge number of applications. Such applications include bioinformatics, chemoinformatics and social networks. One of the most challenging tasks in big graph mining is pattern mining in big graphs. This task consists on using data mining algorithms to discover interesting, unexpected and useful patterns in large amounts of graph data. It aims also to provide deeper understanding of graph data. In this context, several graph processing frameworks and scaling data mining/pattern mining techniques have been proposed to deal with very big graphs. This paper gives an overview of existing data mining and graph processing frameworks that deal with very big graphs. Then it presents a survey of current researches in the field of data mining / pattern mining in big graphs and discusses the main research issues related to this field. It also gives a categorization of both distributed data mining and machine learning techniques, graph processing frameworks and large scale pattern mining approaches.
There are no more papers matching your filters at the moment.