IP2I Lyon
CNRS logoCNRSCalifornia Institute of Technology logoCalifornia Institute of TechnologyUniversity of OsloINFN Sezione di NapoliUniversity of Waterloo logoUniversity of WaterlooSLAC National Accelerator LaboratoryUniversity of UtahUniversity College London logoUniversity College Londonthe University of Tokyo logothe University of TokyoStanford University logoStanford UniversityUniversity of Copenhagen logoUniversity of CopenhagenUniversity of EdinburghCSICNASA Goddard Space Flight Center logoNASA Goddard Space Flight CenterLancaster UniversityCollège de FranceUniversité Paris-Saclay logoUniversité Paris-SaclayHelsinki Institute of PhysicsLawrence Berkeley National Laboratory logoLawrence Berkeley National LaboratoryUniversity of HelsinkiPerimeter Institute for Theoretical Physics logoPerimeter Institute for Theoretical PhysicsSorbonne Université logoSorbonne UniversitéLeiden University logoLeiden UniversityMacquarie UniversityCEA logoCEAUniversity of GenevaÉcole Polytechnique Fédérale de Lausanne (EPFL)University of ViennaLiverpool John Moores UniversityUniversity of PortsmouthAlma Mater Studiorum - Università di BolognaLudwig-Maximilians-Universität MünchenUniversität BonnUniversità di GenovaUniversidade do PortoTechnical University of DenmarkINAF - Osservatorio Astrofisico di TorinoUniversité Côte d’AzurDurham University logoDurham UniversityUniversity of Groningen logoUniversity of GroningenInstituto de Astrofísica e Ciências do EspaçoNiels Bohr InstituteJet Propulsion LaboratoryUniversity of LiègeInstituto de Astrofísica de CanariasUniversidad de ChileUniversity of NottinghamNational Research Council of CanadaCNESINFN, Sezione di TorinoUniversité de MonsUniversidad de La LagunaUniversidad de CantabriaELTE Eötvös Loránd UniversityUniversity of Hawai’iFaculdade de Ciências da Universidade de LisboaThe Open UniversityEuropean Space Astronomy Centre (ESAC)INAF – Istituto di Astrofisica e Planetologia SpazialiKapteyn Astronomical InstituteThe Barcelona Institute of Science and TechnologyRoyal ObservatoryINAF – Osservatorio Astronomico di RomaDonostia International Physics Center DIPCInstitut d'Astrophysique de ParisInstitut de Física d’Altes Energies (IFAE)Institut d’Estudis Espacials de Catalunya (IEEC)INFN - Sezione di PadovaInstituto de Astrofísica de Andalucía (IAA)SRON Netherlands Institute for Space ResearchIJCLabESA/ESTECINAF-IASF MilanoInstitute of Space ScienceInstitut d’Astrophysique SpatialeINFN-Sezione di GenovaLAMEuropean Space Agency (ESA)INFN-Sezione di BolognaKavli Institute for Particle Astrophysics and CosmologyHamburger SternwarteUniversidad Politécnica de CartagenaInstitució Catalana de Recerca i Estudis Avançats (ICREA)Millennium Institute of Astrophysics (MAS)CPPMCentre National d’Etudes SpatialesWaterloo Centre for AstrophysicsHerzberg Astronomy and AstrophysicsMullard Space Science LaboratoryIP2I LyonInstitut de Recherche en Astrophysique et Planétologie (IRAP)University of Applied Sciences and Arts of Southern Switzerland (SUPSI)OCAInstitute of Space Sciences (ICE)Universidad de ConcepciٞnKavli IPMU (WPI)Observatoire de SauvernyDanish Space Research InstituteDeutsches SOFIA InstitutGothard Astrophysical ObservatoryPort d'Informació Científica (PIC)LagrangeMTA-ELTE Extragalactic Astrophysics Research GroupNOVA, Dutch Research School for AstronomyIFCA, Instituto de Física de CantabriaUKRI-STFCINFN-Sezione di Roma TreINFN-Sezione di FerraraCosmic Dawn Center(DAWN)Universit Claude Bernard Lyon 1Universit di FerraraINAF Osservatorio Astronomico di CapodimonteMax Planck Institut fr AstronomieAix-Marseille Universit",Universit degli Studi di PadovaRWTH Aachen UniversityMax Planck-Institute for Extraterrestrial PhysicsCentre de Recherches Astrophysiques de LyonUniversit degli Studi di MilanoUniversit degli Studi di TorinoUniversit degli Studi di Napoli Federico IIINAF Osservatorio di Astrofisica e Scienza dello Spazio di BolognaIFPU Institute for fundamental physics of the UniverseINFN Sezione di TriesteINAF ` Osservatorio Astronomico di TriesteUniversit degli Studi di TriesteINAF Osservatorio Astronomico di Brera
The Euclid Collaboration developed a strong lensing discovery engine combining machine learning, citizen science, and expert assessment, leading to the identification of 497 strong gravitational lens candidates from the Euclid Quick Data Release 1. This includes 243 previously unpublished high-confidence candidates and demonstrates a detection rate of 20.3 lens candidates per square degree, with a significant number having small Einstein radii below 1 arcsecond.
CNRS logoCNRSUniversity of MississippiCalifornia Institute of Technology logoCalifornia Institute of TechnologyUniversity of Cambridge logoUniversity of CambridgeMonash University logoMonash UniversityUniversity of California, Santa Barbara logoUniversity of California, Santa BarbaraTel Aviv University logoTel Aviv UniversityGhent UniversityNikhefGeorgia Institute of Technology logoGeorgia Institute of Technologythe University of Tokyo logothe University of TokyoStanford University logoStanford UniversityThe University of MelbourneUniversity of Maryland, College Park logoUniversity of Maryland, College ParkCornell University logoCornell UniversityINFN logoINFNUniversity of WarsawLouisiana State UniversityInternational Centre for Theoretical Sciences, Tata Institute of Fundamental ResearchUniversity of Florida logoUniversity of FloridaUniversity of Minnesota logoUniversity of MinnesotaThe Pennsylvania State University logoThe Pennsylvania State UniversityUniversité Paris-Saclay logoUniversité Paris-SaclayPolitecnico di MilanoIndian Institute of Technology, BombayCharles Sturt UniversityAustralian National University logoAustralian National UniversityMIT logoMITCardiff UniversityUniversity of GlasgowUniversitat Politècnica de CatalunyaLeibniz Universität HannoverUniversity of PortsmouthHanyang UniversityIndian Institute of Technology MadrasWigner Research Centre for PhysicsSyracuse UniversityInstituto Nacional de Pesquisas EspaciaisUniversitat de ValènciaUniversità di CamerinoUniversitat de les Illes BalearsLomonosov Moscow State UniversityUniversité Côte d’AzurUniversity of BirminghamCalifornia State University, Long BeachUniversidad Nacional Autónoma de MéxicoWashington State UniversityINFN, Laboratori Nazionali del Gran SassoGran Sasso Science Institute (GSSI)University of OregonCalifornia State University, FullertonThe University of Western AustraliaPolish Academy of SciencesUniversity of AdelaideIndian Institute of Technology GandhinagarUniversità di ParmaMax Planck Institute for Gravitational Physics (Albert Einstein Institute)Nicolaus Copernicus Astronomical CenterIndian Institute of Technology GuwahatiIndian Institute of Technology HyderabadUniversità di Napoli Federico IIUniversità degli Studi di SienaObservatoire de la Côte d’AzurThe University of ArizonaRaman Research InstituteIndian Institute of Space Science and TechnologyUniversidad Michoacana de San Nicolás de HidalgoFriedrich-Schiller-University JenaInstitut d’Estudis Espacials de Catalunya (IEEC)IJCLabLaboratoire Kastler BrosselUniversité de RennesUniversità di PerugiaAstroparticule et CosmologieUniversity of Wisconsin–MilwaukeeUniversidad de Santiago de CompostelaUniversità di UrbinoVrije Universiteit Brussel (VUB)The University of Texas Rio Grande ValleyNational Astronomical Observatory of Japan (NAOJ)Astronomical Observatory, University of WarsawInstitut de Ciències del Cosmos (ICCUB)IP2I LyonLMAInstitut FOTONObservatori AstronòmicEuropean Gravitational Observatory (EGO)LPSCInstitute for Cosmic Ray Research (ICRR), KAGRA Observatory, University of TokyoArtemisResearch Center for the Early Universe (RESCEU), The University of TokyoLaboratoire des Matériaux AvancésLaboratoire d’Annecy de Physique des Particules (LAPP)Universit di CataniaUniversità degli Studi di UtrechtInstitute of Space Sciences (ICE–CSIC)Universit Grenoble AlpesUniversit degli Studi di GenovaUniversit Claude Bernard Lyon 1Universit di TrentoUniversit di SalernoUniversit Savoie Mont BlancUniversit Paris CitUniversit de LyonUniversit di PisaSapienza Universit di RomaUniversit di PadovaUniversit degli Studi di FirenzeUniversit di Roma Tor VergataUniversit degli Studi di Udine
We present results from the search for an isotropic gravitational-wave background using Advanced LIGO and Advanced Virgo data from O1 through O4a, the first part of the fourth observing run. This background is the accumulated signal from unresolved sources throughout cosmic history and encodes information about the merger history of compact binaries throughout the Universe, as well as exotic physics and potentially primordial processes from the early cosmos. Our cross-correlation analysis reveals no statistically significant background signal, enabling us to constrain several theoretical scenarios. For compact binary coalescences which approximately follow a 2/3 power-law spectrum, we constrain the fractional energy density to ΩGW(25Hz)2.0×109\Omega_{\rm GW}(25{\rm Hz})\leq 2.0\times 10^{-9} (95% cred.), a factor of 1.7 improvement over previous results. Scale-invariant backgrounds are constrained to ΩGW(25Hz)2.8×109\Omega_{\rm GW}(25{\rm Hz})\leq 2.8\times 10^{-9}, representing a 2.1x sensitivity gain. We also place new limits on gravity theories predicting non-standard polarization modes and confirm that terrestrial magnetic noise sources remain below detection threshold. Combining these spectral limits with population models for GWTC-4, the latest gravitational-wave event catalog, we find our constraints remain above predicted merger backgrounds but are approaching detectability. The joint analysis combining the background limits shown here with the GWTC-4 catalog enables improved inference of the binary black hole merger rate evolution across cosmic time. Employing GWTC-4 inference results and standard modeling choices, we estimate that the total background arising from compact binary coalescences is ΩCBC(25Hz)=0.90.5+1.1×109\Omega_{\rm CBC}(25{\rm Hz})={0.9^{+1.1}_{-0.5}\times 10^{-9}} at 90% confidence, where the largest contribution is due to binary black holes only, ΩBBH(25Hz)=0.80.5+1.1×109\Omega_{\rm BBH}(25{\rm Hz})=0.8^{+1.1}_{-0.5}\times 10^{-9}.
Primordial black holes are under intense scrutiny since the detection of gravitational waves from mergers of solar-mass black holes in 2015. More recently, the development of numerical tools and the precision observational data have rekindled the effort to constrain the black hole abundance in the lower mass range, that is M < 10^{23}g. In particular, primordial black holes of asteroid mass M10171023M \sim 10^{17}-10^{23}\,g may represent 100\% of dark matter. While the microlensing and stellar disruption constraints on their abundance have been relieved, Hawking radiation of these black holes seems to be the only detection (and constraining) mean. Hawking radiation constraints on primordial black holes date back to the first papers by Hawking. Black holes evaporating in the early universe may have generated the baryon asymmetry, modified big bang nucleosynthesis, distorted the cosmic microwave background, or produced cosmological backgrounds of stable particles such as photons and neutrinos. At the end of their lifetime, exploding primordial black holes would produce high energy cosmic rays that would provide invaluable access to the physics at energies up to the Planck scale. In this review, we describe the main principles of Hawking radiation, which lie at the border of general relativity, quantum mechanics and statistical physics. We then present an up-to-date status of the different constraints on primordial black holes that rely on the evaporation phenomenon, and give, where relevant, prospects for future work. In particular, non-standard black holes and emission of beyond the Standard Model degrees of freedom is currently a hot subject.
The Method of Brackets (MoB) is a technique used to compute definite integrals, that has its origin in the negative dimensional integration method. It was originally proposed for the evaluation of Feynman integrals for which, when applicable, it gives the results in terms of combinations of (multiple) series. We focus here on some of the limitations of MoB and address them by studying the Mellin-Barnes (MB) representation technique. There has been significant process recently in the study of the latter due to the development of a new computational approach based on conic hulls (see Phys. Rev. Lett. 127, 151601 (2021)). The comparison between the two methods helps to understand the limitations of the MoB, in particular when termwise divergent series appear. As a consequence, the MB technique is found to be superior over MoB for two major reasons: 1. the selection of the sets of series that form a series representation for a given integral follows, in the MB approach, from specific intersections of conic hulls, which, in contrast to MoB, does not need any convergence analysis of the involved series, and 2. MB can be used to evaluate resonant (i.e. logarithmic) cases where MoB fails due to the appearance of termwise divergent series. Furthermore, we show that the recently added Rule 5 of MoB naturally emerges as a consequence of the residue theorem in the context of MB.
Markarian 231 (Mrk 231) is one of the brightest ultraluminous infrared galaxies (ULIRGs) known to date. It displays a unique optical-UV spectrum, characterized by a strong and perplexing attenuation in the near-UV, associated with a sudden polarization peak. Building on previous spectro-photometric modeling, we investigated the hypothesis that the core of Mrk 231 may host a binary SMBH system. In this scenario, the accretion disk of the primary, more massive SMBH is responsible for the optical-UV spectrum. The disk of the secondary, less massive SMBH, would be expected to essentially emit in the far UV. We applied this model to archival photometric and polarimetric data of Mrk 231 and tried to obtain the best fit possible. To support our findings, we performed radiative transfer calculations to determine the spatial disposition of each main component constituting Mrk 231. We find that a binary SMBH model can reproduce both the observed flux and polarization of Mrk 231 remarkably well. We infer that the core potentially hosts a binary SMBH system, with a primary SMBH of about 1.6x10^8 solar masses and a secondary of about 1.1x10^7 solar masses , separated by a semimajor axis of 146 AU.The secondary SMBH drives a degree of polarization of 3 % between 0.1 and 0.2 {\mu}m, with a corresponding polarization position angle of about 134{\deg} , which is consistent with scattering within an accretion disk. The primary SMBH and the structure around it are responsible for a degree of polarization of 23 % between 0.3 and 0.4 {\mu}m with a corresponding polarization position angle of about 96{\deg} , that is possibly attributed to scattering within the quasar's wind. Finally, our model predicts the existence of a second peak in polarized flux in the far-ultraviolet, a telltale signature that could definitively prove the presence of a binary SMBH.
As a potential candidate for the late-time accelerating expansion of the Universe, the Chaplygin gas and its generalized models have significant implications to modern cosmology. In this work we investigate the effects of dark energy on the internal structure of a neutron star composed of two phases, which leads us to wonder: Do stable neutron stars have a dark-energy core? To address this question, we focus on the radial stability of stellar configurations composed by a dark-energy core -- described by a Chaplygin-type equation of state (EoS) -- and an ordinary-matter external layer which is described by a polytropic EoS. We examine the impact of the rate of energy densities at the phase-splitting surface, defined as α=ρdis/ρdis+\alpha= \rho_{\rm dis}^-/\rho_{\rm dis}^+, on the radius, total gravitational mass and oscillation spectrum. The resulting mass-radius diagrams are notably different from dark energy stars without a common-matter crust. Specifically, it is found that both the mass and the radius of the maximum-mass configuration decrease as α\alpha becomes smaller. Furthermore, our theoretical predictions for mass-radius relations consistently describe the observational measurements of different massive millisecond pulsars as well as the central compact object within the supernova remnant HESS J1731-347. The analysis of the normal oscillation modes reveals that there are two regions of instability on the M(ρc)M(\rho_c) curve when α\alpha is small enough indicating that the usual stability criterion dM/dρc>0dM/d\rho_c>0 still holds for rapid phase transitions. However, this is no longer true for the case of slow transitions.
CNRS logoCNRSCalifornia Institute of Technology logoCalifornia Institute of TechnologyUniversity of OsloHeidelberg UniversityUniversity of Waterloo logoUniversity of WaterlooMonash University logoMonash UniversityUniversity of UtahUniversity College London logoUniversity College LondonUniversity of Oxford logoUniversity of OxfordUniversity of California, Irvine logoUniversity of California, IrvineUniversity of Copenhagen logoUniversity of CopenhagenUniversity of EdinburghINFN logoINFNCSICNASA Goddard Space Flight Center logoNASA Goddard Space Flight CenterUniversidade de LisboaCERN logoCERNUniversité Paris-Saclay logoUniversité Paris-SaclayHelsinki Institute of PhysicsUniversity of HelsinkiPerimeter Institute for Theoretical Physics logoPerimeter Institute for Theoretical PhysicsSorbonne Université logoSorbonne UniversitéUniversity of TurkuCEA logoCEAÉcole Polytechnique Fédérale de Lausanne (EPFL)University of BelgradeENS de LyonUniversity of PortsmouthThe Ohio State University logoThe Ohio State UniversityLudwig-Maximilians-Universität MünchenUniv LyonUniversit`a degli Studi di GenovaUniversidade do PortoObservatoire de ParisTechnical University of DenmarkUniversity of TartuCentro de Astrofísica da Universidade do PortoINAF - Osservatorio Astrofisico di TorinoDurham University logoDurham UniversityUniversity of Groningen logoUniversity of GroningenUniversity of BathNiels Bohr InstituteUniversit ́e de Gen`eveJet Propulsion LaboratoryUniversity of NottinghamUniversity of Central LancashireSISSACNESUniversit`a di BolognaPSL Research UniversityUniversidad de La LagunaLaboratoire LagrangeObservatoire de la Côte d’AzurUniversity of Hawai’iUniversit`a degli Studi di MilanoINAF – Istituto di Astrofisica e Planetologia SpazialiKapteyn Astronomical InstituteMax Planck Institute for AstronomyObservatoire astronomique de StrasbourgThe Barcelona Institute of Science and TechnologyUniversity of JyvaskylaLaboratoire d’Astrophysique de MarseilleOzGrav: The ARC Centre of Excellence for Gravitational-Wave DiscoveryINAF – Osservatorio Astronomico di RomaGrenoble-INPInstitut d'Astrophysique de ParisUniversidad de SalamancaInstitut de Física d’Altes Energies (IFAE)Institut d’Estudis Espacials de Catalunya (IEEC)Università della CalabriaLaboratoire de Physique des 2 Infinis Irène Joliot-CurieUniversità degli Studi di Roma "Tor Vergata"INAF-IASF MilanoInstitute of Space ScienceUniversidade de CoimbraLAPThCentro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT)European Space Agency (ESA)Tartu ObservatoryInstitució Catalana de Recerca i Estudis Avançats (ICREA)Universit`a Degli Studi Di Napoli “Federico II”Astroparticule et CosmologieUniversidade Federal de Juiz de ForaAIMCPPMDeimos Space S.L.U.LERMAAgenzia Spaziale Italiana (ASI)Museo Storico della Fisica e Centro Studi e Ricerche Enrico FermiInstituto de Física Teórica UAM/CSICIP2I LyonUniv Claude Bernard Lyon 1CFisUCUniversit`a degli Studi di FerraraLaboratoire Univers et Théories LUThObservatoire de SauvernyPort d’Informació CientíficaCentre de Recherche Astrophysique de Lyon (CRAL)Space Research CentreUniversit ́e Cte d’AzurLPSC-Université Grenoble AlpesUniversit`a degli Studi di Milano StataleIATE, CONICET – Universidad Nacional de C ́ordobaUniversitat Politècnica de CartagenaAlma Mater Studiorum · Università di BolognaCosmic Dawn Center(DAWN)Institute of Space Sciences (ICE–CSIC)Universit de ParisUniversidad Autnoma de MadridINAF Osservatorio Astronomico di CapodimonteUniversit degli Studi di PadovaUniversit at BonnUniversit Savoie Mont BlancUniversit Paris CitUniversit de StrasbourgRWTH Aachen UniversityMax Planck-Institute for Extraterrestrial PhysicsRuhr-University-BochumINAF Osservatorio Astrofisico di ArcetriAix-Marseille Universit eINAF Osservatorio Astronomico di PadovaUniversit degli Studi di TorinoINAF Osservatorio di Astrofisica e Scienza dello Spazio di BolognaIFPU Institute for fundamental physics of the UniverseINAF ` Osservatorio Astronomico di Trieste“Sapienza" Università di Roma
The Euclid Collaboration provides a comprehensive forecast of the Euclid mission's ability to constrain parameterized models of modified gravity, employing model-independent approaches such as Phenomenological Modified Gravity (PMG) and Effective Field Theory (EFT) of Dark Energy. The study predicts that Euclid will improve constraints on PMG parameters by an order of magnitude (e.g., σ(Σ_0) ≈ 2.6% for PMG-1) and achieve world-leading precision on EFT parameters (e.g., σ(α_B,0) ≈ 11.6% for EFT-2), highlighting the critical need for improved theoretical modeling of nonlinear scales to fully exploit the mission's data.
High energy collisions at the High-Luminosity Large Hadron Collider (LHC) produce a large number of particles along the beam collision axis, outside of the acceptance of existing LHC experiments. The proposed Forward Physics Facility (FPF), to be located several hundred meters from the ATLAS interaction point and shielded by concrete and rock, will host a suite of experiments to probe Standard Model (SM) processes and search for physics beyond the Standard Model (BSM). In this report, we review the status of the civil engineering plans and the experiments to explore the diverse physics signals that can be uniquely probed in the forward region. FPF experiments will be sensitive to a broad range of BSM physics through searches for new particle scattering or decay signatures and deviations from SM expectations in high statistics analyses with TeV neutrinos in this low-background environment. High statistics neutrino detection will also provide valuable data for fundamental topics in perturbative and non-perturbative QCD and in weak interactions. Experiments at the FPF will enable synergies between forward particle production at the LHC and astroparticle physics to be exploited. We report here on these physics topics, on infrastructure, detector, and simulation studies, and on future directions to realize the FPF's physics potential.
We address the question of the role of low-energy nuclear physics data in constraining neutron star global properties, e.g., masses, radii, angular momentum, and tidal deformability, in the absence of a phase transition in dense matter. To do so, we assess the capacity of 415 relativistic mean field and non-relativistic Skyrme-type interactions to reproduce the ground state binding energies, the charge radii and the giant monopole resonances of a set of spherical nuclei. The interactions are classified according to their ability to describe these characteristics and we show that a tight correlation between the symmetry energy and its slope is obtained providing N=ZN=Z and NZN\ne Z nuclei are described with the same accuracy (mainly driven by the charge radius data). By additionally imposing the constraints from isobaric analog states and neutron skin radius in 208^{208}Pb, we obtain the following estimates: Esym,2=31.8±0.7E_{sym,2}=31.8\pm 0.7 MeV and Lsym,2=58.1±9.0L_{sym,2}=58.1\pm 9.0 MeV. We then analyze predictions of neutron star properties and we find that the 1.4MM_\odot neutron star (NS) radius lies between 12 and 14 km for the "better" nuclear interactions. We show that i) the better reproduction of low-energy nuclear physics data by the nuclear models only weakly impacts the global properties of canonical mass neutron stars and ii) the experimental constraint on the symmetry energy is the most effective one for reducing the uncertainties in NS matter. However, since the density region where constraints are required are well above densities in finite nuclei, the largest uncertainty originates from the density dependence of the EDF, which remains largely unknown.
ETH Zurich logoETH ZurichCNRS logoCNRSCalifornia Institute of Technology logoCalifornia Institute of TechnologyUniversity of OsloUniversity of Cambridge logoUniversity of CambridgeUniversity of Waterloo logoUniversity of WaterlooUniversity of Chicago logoUniversity of ChicagoUniversity College London logoUniversity College LondonUniversity of Oxford logoUniversity of OxfordUniversity of California, Irvine logoUniversity of California, IrvineUniversity of Copenhagen logoUniversity of CopenhagenUniversity of EdinburghCornell University logoCornell UniversityNASA Goddard Space Flight Center logoNASA Goddard Space Flight CenterUniversidade de LisboaEPFL logoEPFLUniversity of GenoaUniversidad Autónoma de MadridUniversité Paris-Saclay logoUniversité Paris-SaclayHelsinki Institute of PhysicsUniversity of HelsinkiPerimeter Institute for Theoretical Physics logoPerimeter Institute for Theoretical PhysicsUniversité de GenèveSorbonne Université logoSorbonne UniversitéUniversity of HertfordshireUniversity of TurkuUniversity of PortsmouthLudwig-Maximilians-Universität MünchenUniversidad Complutense de MadridUniversity of St Andrews logoUniversity of St AndrewsUniversity of SussexObservatoire de ParisTechnical University of DenmarkINAF - Osservatorio Astrofisico di TorinoDurham University logoDurham UniversityUniversity of Groningen logoUniversity of GroningenInstituto de Astrofísica e Ciências do EspaçoJet Propulsion LaboratoryUniversity of Southern DenmarkInstituto de Astrofísica de CanariasBandung Institute of TechnologyRuhr-Universität BochumSISSAINFN, Sezione di TorinoPontificia Universidad Católica de ChileUniversidad de La LagunaConsejo Superior de Investigaciones Científicas (CSIC)University of Hawai’iINFN, Sezione di MilanoEuropean Space Astronomy Centre (ESAC)Max Planck Institute for AstronomyCNRS/IN2P3INAF – Osservatorio Astronomico di RomaInstitut d'Astrophysique de ParisUniversidad de SalamancaInstitut de Física d’Altes Energies (IFAE)Institut d’Estudis Espacials de Catalunya (IEEC)Institució Catalana de Recerca i Estudis AvançatsUniversità della CalabriaUniversità degli Studi di Roma "Tor Vergata"INFN - Sezione di PadovaINAF- Osservatorio Astronomico di CagliariINAF-IASF MilanoUniversità di FirenzeInstitute of Space ScienceTelespazio U.K. Ltd.LAMDTU SpaceEuropean Space Agency (ESA)INFN-Sezione di BolognaUniversidad Politécnica de CartagenaAstroparticule et CosmologieRuprecht-Karls-Universität HeidelbergCentro de Estudios de Física del Cosmos de Aragón (CEFCA)CPPMUniversité de LausanneInfrared Processing and Analysis CenterLERMAInstitut d’Astrophysique Spatiale (IAS)Agenzia Spaziale Italiana (ASI)Instituto de Física Teórica UAM/CSICINAF, Istituto di Astrofisica Spaziale e Fisica Cosmica di BolognaUniversité LyonIP2I LyonInstituto de Física de Partículas y del Cosmos IPARCOSINAF – OAS, Osservatorio di Astrofisica e Scienza dello Spazio di BolognaLaboratoire de Physique de Clermont (LPC)CEA/DRFArgelander-Institut für Astronomie (AIfA)Port d'Informació Científica (PIC)ITERA Research InstituteSpace SystemsCosmic Dawn Center(DAWN)Institute of Space Sciences (ICE–CSIC)INFN National Institute for Nuclear PhysicsUniversit de ParisUniversit Claude Bernard Lyon 1INAF Osservatorio Astronomico di CapodimonteAix-Marseille Universit",Universit degli Studi di PadovaExcellence Cluster ‘Origins’Universit Paris CitMax Planck-Institute for Extraterrestrial PhysicsUniversit Clermont AuvergneUniversit degli Studi di MilanoINAF Osservatorio Astronomico di PadovaUniversit degli Studi di TorinoUniversity of Naples “Federico II”Center for Astrophysics  Harvard & SmithsonianUniversit Di BolognaIFPU Institute for fundamental physics of the UniverseINFN Sezione di TriesteINAF ` Osservatorio Astronomico di TriesteINAF IRAUniversit degli Studi di TriesteINAF Osservatorio Astronomico di Brera
We investigate the accuracy and range of validity of the perturbative model for the 2-point (2PCF) and 3-point (3PCF) correlation functions in real space in view of the forthcoming analysis of the Euclid mission spectroscopic sample. We take advantage of clustering measurements from four snapshots of the Flagship I N-body simulations at z = {0.9, 1.2, 1.5, 1.8}, which mimic the expected galaxy population in the ideal case of absence of observational effects such as purity and completeness. For the 3PCF we consider all available triangle configurations given a minimal separation. First, we assess the model performance by fixing the cosmological parameters and evaluating the goodness-of-fit provided by the perturbative bias expansion in the joint analysis of the two statistics, finding overall agreement with the data down to separations of 20 Mpc/h. Subsequently, we build on the state-of-the-art and extend the analysis to include the dependence on three cosmological parameters: the amplitude of scalar perturbations As, the matter density {\omega}cdm and the Hubble parameter h. To achieve this goal, we develop an emulator capable of generating fast and robust modelling predictions for the two summary statistics, allowing efficient sampling of the joint likelihood function. We therefore present the first joint full-shape analysis of the real-space 2PCF and 3PCF, testing the consistency and constraining power of the perturbative model across both probes, and assessing its performance in a combined likelihood framework. We explore possible systematic uncertainties induced by the perturbative model at small scales finding an optimal scale cut of rmin = 30 Mpc/h for the 3PCF, when imposing an additional limitation on nearly isosceles triangular configurations included in the data vector. This work is part of a Euclid Preparation series validating theoretical models for galaxy clustering.
In the next decade, many optical surveys will aim to tackle the question of dark energy nature, measuring its equation of state parameter at the permil level. This requires trusting the photometric calibration of the survey with a precision never reached so far, controlling many sources of systematic uncertainties. The measurement of the on-site atmospheric transmission for each exposure, or on average for each season or for the full survey, can help reach the permil precision for magnitudes. This work aims at proving the ability to use slitless spectroscopy for standard star spectrophotometry and its use to monitor on-site atmospheric transmission as needed, for example, by the Vera C. Rubin Observatory Legacy Survey of Space and Time supernova cosmology program. We fully deal with the case of a disperser in the filter wheel, which is the configuration chosen in the Rubin Auxiliary Telescope. The theoretical basis of slitless spectrophotometry is at the heart of our forward model approach to extract spectroscopic information from slitless data. We developed a publicly available software called Spectractor (this https URL) that implements each ingredient of the model and finally performs a fit of a spectrogram model directly on image data to get the spectrum. We show on simulations that our model allows us to understand the structure of spectrophotometric exposures. We also demonstrate its use on real data, solving specific issues and illustrating how our procedure allows the improvement of the model describing the data. Finally, we discuss how this approach can be used to directly extract atmospheric transmission parameters from data and thus provide the base for on-site atmosphere monitoring. We show the efficiency of the procedure on simulations and test it on the limited data set available.
ETH Zurich logoETH ZurichCNRS logoCNRSUniversity of OsloINFN Sezione di NapoliUniversity College London logoUniversity College LondonUniversity of Oxford logoUniversity of OxfordUniversity of California, Irvine logoUniversity of California, IrvineUniversity of EdinburghUniversidade de LisboaCollège de FranceUniversidad Autónoma de MadridUniversité Paris-Saclay logoUniversité Paris-SaclayUniversity of HelsinkiSorbonne Université logoSorbonne UniversitéUniversity of TurkuLeiden University logoLeiden UniversityCEA logoCEAPrinceton University logoPrinceton UniversityUniversity of GenevaUniversity of PortsmouthUniversitat de BarcelonaLudwig-Maximilians-Universität MünchenUniversidad Complutense de MadridUniversität BonnUniversity of TwenteUniversidade do PortoUniversity of OuluObservatoire de ParisUniversité Côte d’AzurDurham University logoDurham UniversityInstituto de Astrofísica e Ciências do EspaçoJet Propulsion Laboratory, California Institute of TechnologyInstituto de Astrofísica de CanariasUniversity of NottinghamSwinburne University of TechnologyEuropean Space AgencyÉcole Polytechnique Fédérale de LausanneUniversidad de AlicanteRuhr-Universität BochumCNESIRDINFN, Sezione di TorinoUniversità degli Studi di BolognaUniversidad de La LagunaNiels Bohr Institute, University of CopenhagenMullard Space Science Laboratory, University College LondonINAF – Istituto di Astrofisica e Planetologia SpazialiThe Barcelona Institute of Science and TechnologyINAF – Osservatorio Astronomico di RomaInstitut d'Astrophysique de ParisInstitut de Física d’Altes Energies (IFAE)Institut d’Estudis Espacials de Catalunya (IEEC)Universidad de CádizUniversità degli Studi di Roma "Tor Vergata"INFN - Sezione di PadovaIJCLabIPAC, California Institute of TechnologyINAF-IASF MilanoKapteyn Astronomical Institute, University of GroningenInstitute of Space ScienceInstitut d’Astrophysique SpatialeINFN-Sezione di GenovaAgenzia Spaziale ItalianaCentro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT)INFN, Sezione di CataniaINFN-Sezione di BolognaInstitució Catalana de Recerca i Estudis Avançats (ICREA)Centro de Estudios de Física del Cosmos de Aragón (CEFCA)AIMCPPMKavli Institute for Cosmology CambridgeInstituto de Física Teórica UAM/CSICFraunhofer Institute for Applied Optics and Precision EngineeringIP2I LyonCentro de Astrobiología (CAB), CSIC-INTAInstitut de Recherche en Astrophysique et Planétologie (IRAP)Jodrell Bank Centre for Astrophysics, University of ManchesterDTU Space, National Space Institute, Technical University of DenmarkPort d’Informació CientíficaInstitut de Ciències de l’Espai (IEEC-CSIC)LAM UMR 7326IFCA, Instituto de Física de Cantabria (UC-CSIC)Institute for Theoretical Particle Physics and Cosmology (TTK)Danish Centre for Astrophysics and CosmologyPSL Université ParisNOVA, Dutch Research School for AstronomyUPJV, Université Picardie Jules VerneSerco Italia S.p.A.CSIRO Space & Astronomy, Australia Telescope National FacilityInstitute of Space Sciences (ICE–CSIC)Universit degli Studi di FerraraUniversit de ParisUniversit Grenoble AlpesUniversit degli Studi di GenovaUniversit de ToulouseUniversit Claude Bernard Lyon 1INAF Osservatorio Astronomico di CapodimonteMax Planck Institut fr AstronomieAix-Marseille Universit",Universit degli Studi di PadovaUniversit Paris CitRWTH Aachen UniversityMax Planck-Institute for Extraterrestrial PhysicsUniversit de LyonSapienza Universit di RomaINAF Osservatorio Astrofisico di ArcetriUniversit degli Studi di MilanoINAF Osservatorio Astronomico di PadovaUniversit degli Studi di TorinoUniversit degli Studi di Napoli Federico IIINAF Osservatorio di Astrofisica e Scienza dello Spazio di BolognaIFPU Institute for fundamental physics of the UniverseINFN Sezione di TriesteINAF ` Osservatorio Astronomico di TriesteUniversit degli Studi di TriesteINAF Osservatorio Astronomico di Brera
We present HST2EUCLID, a novel Python code to generate Euclid realistic mock images in the HEH_{\rm E}, JEJ_{\rm E}, YEY_{\rm E}, and IEI_{\rm E} photometric bands based on panchromatic Hubble Space Telescope observations. The software was used to create a simulated database of Euclid images for the 27 galaxy clusters observed during the Cluster Lensing And Supernova survey with Hubble (CLASH) and the Hubble Frontier Fields (HFF) program. Since the mock images were generated from real observations, they incorporate, by construction, all the complexity of the observed galaxy clusters. The simulated Euclid data of the galaxy cluster MACS J0416.1-2403 were then used to explore the possibility of developing strong lensing models based on the Euclid data. In this context, complementary photometric or spectroscopic follow-up campaigns are required to measure the redshifts of multiple images and cluster member galaxies. By Euclidising six parallel blank fields obtained during the HFF program, we provide an estimate of the number of galaxies detectable in Euclid images per deg2{\rm deg}^2 per magnitude bin (number counts) and the distribution of the galaxy sizes. Finally, we present a preview of the Chandra Deep Field South that will be observed during the Euclid Deep Survey and two examples of galaxy-scale strong lensing systems residing in regions of the sky covered by the Euclid Wide Survey. The methodology developed in this work lends itself to several additional applications, as simulated Euclid fields based on HST (or JWST) imaging with extensive spectroscopic information can be used to validate the feasibility of legacy science cases or to train deep learning techniques in advance, thus preparing for a timely exploitation of the Euclid Survey data.
We present the Hestia simulation suite: High-resolutions Environmental Simulations of The Immediate Area, a set of cosmological simulations of the Local Group. Initial conditions constrained by the observed peculiar velocity of nearby galaxies are employed to accurately simulate the local cosmography. Halo pairs that resemble the Local Group are found in low resolutions constrained, dark matter only simulations, and selected for higher resolution magneto hydrodynamic simulation using the Arepo code. Baryonic physics follows the Auriga model of galaxy formation. The simulations contain a high resolution region of 3-5 Mpc in radius from the Local Group midpoint embedded in the correct cosmographic landscape. Within this region a simulated Local Group consisting of a Milky Way and Andromeda like galaxy forms, whose description is in excellent agreement with observations. The simulated Local Group galaxies resemble the Milky Way and Andromeda in terms of their halo mass, mass ratio, stellar disc mass, morphology separation, relative velocity, rotation curves, bulge-disc morphology, satellite galaxy stellar mass function, satellite radial distribution and in some cases, the presence of a Magellanic cloud like object. Because these simulations properly model the Local Group in their cosmographic context, they provide a testing ground for questions where environment is thought to play an important role.
Institute for Computational and Data SciencesCNRS logoCNRSAcademia SinicaUniversity of Cambridge logoUniversity of CambridgeMonash University logoMonash UniversityNational Central UniversityUniversita di PisaUniversity of Chicago logoUniversity of ChicagoNikhefGeorgia Institute of Technology logoGeorgia Institute of Technologythe University of Tokyo logothe University of TokyoPusan National UniversityStanford University logoStanford UniversityUniversity of Bristol logoUniversity of BristolUniversity of Copenhagen logoUniversity of CopenhagenThe Chinese University of Hong Kong logoThe Chinese University of Hong KongUniversity of MelbourneINFN logoINFNUniversity of WarsawUniversita di PerugiaNASA Goddard Space Flight Center logoNASA Goddard Space Flight CenterLouisiana State UniversityInternational Centre for Theoretical Sciences, Tata Institute of Fundamental ResearchUniversit‘a di Napoli Federico IIUniversity of Florida logoUniversity of FloridaUniversity of Minnesota logoUniversity of MinnesotaUniversity of Maryland logoUniversity of MarylandSeoul National University logoSeoul National UniversityNational Taiwan Normal UniversityThe Pennsylvania State University logoThe Pennsylvania State UniversityRochester Institute of TechnologyChennai Mathematical InstituteKing’s College London logoKing’s College LondonIndian Institute of Technology, BombayScuola Superiore MeridionaleNational Changhua University of EducationCharles Sturt UniversityAustralian National University logoAustralian National UniversityUniversity of Western AustraliaUniversity of GlasgowHigh Energy Accelerator Research Organization (KEK)The Graduate University for Advanced Studies (SOKENDAI)Universit`a degli Studi di GenovaWigner Research Centre for PhysicsUniversity of Alabama in HuntsvilleSyracuse UniversityNicolaus Copernicus Astronomical Center, Polish Academy of SciencesObservatoire de ParisInstituto Nacional de Pesquisas EspaciaisIndian Institute of Technology DelhiUniversitat de les Illes BalearsLomonosov Moscow State UniversitySouthwest Jiaotong UniversityUniversity of BirminghamNational Cheng Kung UniversityColl`ege de FranceNiels Bohr InstituteWashington State UniversityINFN, Laboratori Nazionali del Gran SassoGran Sasso Science Institute (GSSI)University of OregonCalifornia State University, FullertonNational Tsing-Hua UniversityBar Ilan UniversityUniversity of AdelaideUniversite Libre de BruxellesIndian Institute of Technology GandhinagarUniversit`a di BolognaMax Planck Institute for Gravitational Physics (Albert Einstein Institute)Universite catholique de LouvainUniversitat de ValenciaResonac CorporationInstitute for Plasma ResearchInter-University Centre for Astronomy and AstrophysicsWest Virginia UniversityCNR-SPINInstituto de Astrofísica de AndalucíaObservatoire de la Cˆote d’AzurIJCLabLaboratoire Kastler BrosselUniversity of ToyamaUniversit`a di Roma TreLaboratoire Charles CoulombUniversity of SzegedUniversity of Wisconsin–MilwaukeeNational Synchrotron Radiation Research CenterKorea Institute of Science and Technology InformationUniversite de StrasbourgLIGO Hanford ObservatoryUniversit‘a di SalernoLIGO, California Institute of TechnologyUniversit\'e C\^ote d'AzurLUTHThe University of Texas Rio Grande ValleyNational Astronomical Observatory of Japan (NAOJ)National Institute for Mathematical SciencesLIGO Livingston ObservatoryIP2I LyonLeibniz Universit\"at HannoverUniversit´e de MontpellierUniversit\`a degli Studi di Urbino ‘Carlo Bo’Laboratoire de l'Accelerateur LineaireUniversit`e de Li`egeLaboratoire de Physique des 2 Infinis Ir`ene Joliot-CurieInstitut FOTONUniversit`a degli Studi di UdineEuropean Gravitational Observatory (EGO)Inje UniversityUniversite du Littoral - Cote d’OpaleLaboratoire d’Annecy de Physique des Particules (LAPP)Universit`a della Campania “Luigi Vanvitelli”Universit´e Paris Cit´eIPHC UMR 7178Key Laboratory of Quantum Optics and Quantum InformationUniversit`a di Cassino e del Lazio MeridionaleUniversit`a degli Studi di SannioCentre Scientifique et Technique du BˆatimentDirectorate of Knowledge Management in Healthcare, Sree Chitra Tirunal Institute for Medical Sciences and TechnologyInstitute for Astronomical ScienceUniversit´e Claude Bernard (Lyon 1)Friedrich-Schiller-Universität JenaÉ́cole normale supérieureUniversita di ParmaUniversité Paris-SaclayUniversită di CagliariUniversità degli Studi di Napoli “Parthenope”Universita' di SienaUniv-RennesINAF Osservatorio Astronomico di PadovaUniversita di Roma ‘La Sapienza’Universita' di PadovaUniversité PSLSorbonne Université
We search for gravitational-wave signals associated with gamma-ray bursts detected by the Fermi and Swift satellites during the second half of the third observing run of Advanced LIGO and Advanced Virgo (1 November 2019 15:00 UTC-27 March 2020 17:00 UTC).We conduct two independent searches: a generic gravitational-wave transients search to analyze 86 gamma-ray bursts and an analysis to target binary mergers with at least one neutron star as short gamma-ray burst progenitors for 17 events. We find no significant evidence for gravitational-wave signals associated with any of these gamma-ray bursts. A weighted binomial test of the combined results finds no evidence for sub-threshold gravitational wave signals associated with this GRB ensemble either. We use several source types and signal morphologies during the searches, resulting in lower bounds on the estimated distance to each gamma-ray burst. Finally, we constrain the population of low luminosity short gamma-ray bursts using results from the first to the third observing runs of Advanced LIGO and Advanced Virgo. The resulting population is in accordance with the local binary neutron star merger rate.
CNRS logoCNRSCalifornia Institute of Technology logoCalifornia Institute of TechnologyUniversity of OsloHeidelberg UniversityUniversity of Manchester logoUniversity of ManchesterGhent UniversityUniversity College London logoUniversity College LondonUniversity of California, Irvine logoUniversity of California, IrvineUniversity of Copenhagen logoUniversity of CopenhagenINFN logoINFNCSICNASA Goddard Space Flight Center logoNASA Goddard Space Flight CenterUniversidade de LisboaLancaster UniversityEPFL logoEPFLUniversité Paris-Saclay logoUniversité Paris-SaclayHelsinki Institute of PhysicsUniversity of HelsinkiSorbonne Université logoSorbonne UniversitéCEA logoCEAUniversity of GenevaUniversity of PortsmouthAlma Mater Studiorum - Università di BolognaLudwig-Maximilians-Universität MünchenUniversidad Complutense de MadridUniversität BonnUniversità di GenovaUniv LyonUniversidade do PortoUniversity of OuluTechnical University of DenmarkINAF - Osservatorio Astrofisico di TorinoUniversité Côte d’AzurDurham University logoDurham UniversityUniversity of Groningen logoUniversity of GroningenInstituto de Astrofísica e Ciências do EspaçoNiels Bohr InstituteJet Propulsion LaboratoryInstituto de Astrofísica de CanariasUniversity of NottinghamSwinburne University of TechnologyEuropean Space AgencyEuropean Southern Observatory logoEuropean Southern ObservatorySISSACNESUniversidad de La LagunaUniversidad de CantabriaInstituto de Física de Cantabria (IFCA)Laboratoire LagrangeObservatoire de la Côte d’AzurUniversity of Hawai’iINTANational Centre for Nuclear Research (NCBJ)European Space Astronomy Centre (ESAC)University of the Western CapeMax Planck Institute for AstronomyThe Barcelona Institute of Science and TechnologyINAF – Osservatorio Astronomico di RomaInstitut d'Astrophysique de ParisUniversidad de SalamancaInstitut de Física d’Altes Energies (IFAE)IPACInstitut d’Estudis Espacials de Catalunya (IEEC)Barcelona Supercomputing Center (BSC)Instituto de Astrofísica de Andalucía (IAA)INAF - Osservatorio Astrofisico di CataniaUniversidad de MurciaLaboratório de Instrumentação e Física Experimental de Partículas (LIP)Institute of Space ScienceAirbus Defence and SpaceIRAPInstitució Catalana de Recerca i Estudis Avançats (ICREA)LAM (Laboratoire d’Astrophysique de Marseille)Observatoire de GenèveAgenzia Spaziale Italiana (ASI)INAF, Istituto di Astrofisica Spaziale e Fisica Cosmica di BolognaUniversidad Metropolitana de Ciencias de la EducaciónObservatoire de LyonMullard Space Science LaboratoryIP2I LyonESTECInstituto de Física TeóricaUAMAurora TechnologyInstituto de Física de Partículas y del Cosmos IPARCOSPort d’Informació CientíficaCentre de Recherche Astrophysique de Lyon (CRAL)Danish Space Research InstituteLaboratoire AIMGerman Centre for Cosmological LensingInstitut de Ciències de l’Espai (ICE)ESRININAF – Osservatorio Astrofisico di MilanoCPPM – Centre de Physique des Particules de MarseilleCentre for Astrobiology (CAB)Cosmic Dawn Center(DAWN)Universit catholique de LouvainUniversit de ToulouseUniversit Claude Bernard Lyon 1Universit del SalentoINAF Osservatorio Astronomico di CapodimonteAix-Marseille Universit",Universit degli Studi di PadovaUniversit Paris CitMax Planck-Institute for Extraterrestrial PhysicsRuhr-University-BochumUniversit Paul SabatierUniversit di TorinoINAF Osservatorio Astrofisico di ArcetriUniversit degli Studi di MilanoINAF Osservatorio Astronomico di PadovaUniversit degli Studi di Milano-BicoccaUniversit degli Studi di Napoli Federico IIINAF Osservatorio di Astrofisica e Scienza dello Spazio di BolognaIFPU Institute for fundamental physics of the UniverseINAF ` Osservatorio Astronomico di TriesteUniversit degli Studi di Trieste
Local Universe dwarf galaxies are both cosmological and mass assembly probes. Deep surveys have enabled the study of these objects down to the low surface brightness (LSB) regime. In this paper, we estimate Euclid's dwarf detection capabilities as well as limits of its MERge processing function (MER pipeline), responsible for producing the stacked mosaics and final catalogues. To do this, we inject mock dwarf galaxies in a real Euclid Wide Survey (EWS) field in the VIS band and compare the input catalogue to the final MER catalogue. The mock dwarf galaxies are generated with simple Sérsic models and structural parameters extracted from observed dwarf galaxy property catalogues. To characterize the detected dwarfs, we use the mean surface brightness inside the effective radius SBe (in mag arcsec-2). The final MER catalogues achieve completenesses of 91 % for SBe in [21, 24], and 54 % for SBe in [24, 28]. These numbers do not take into account possible contaminants, including confusion with background galaxies at the location of the dwarfs. After taking into account those effects, they become respectively 86 % and 38 %. The MER pipeline performs a final local background subtraction with small mesh size, leading to a flux loss for galaxies with Re > 10". By using the final MER mosaics and reinjecting this local background, we obtain an image in which we recover reliable photometric properties for objects under the arcminute scale. This background-reinjected product is thus suitable for the study of Local Universe dwarf galaxies. Euclid's data reduction pipeline serves as a test bed for other deep surveys, particularly regarding background subtraction methods, a key issue in LSB science.
Narrow transient emission lines (flash-ionization features) in early supernova (SN) spectra trace the presence of circumstellar material (CSM) around the massive progenitor stars of core-collapse SNe. The lines disappear within days after the SN explosion, suggesting that this material is spatially confined, and originates from enhanced mass loss shortly (months to a few years) prior to explosion. We performed a systematic survey of H-rich (Type II) SNe discovered within less than two days from explosion during the first phase of the Zwicky Transient Facility (ZTF) survey (2018-2020), finding thirty events for which a first spectrum was obtained within < 2 days from explosion. The measured fraction of events showing flash ionisation features (>36\% at 95%95\% confidence level) confirms that elevated mass loss in massive stars prior to SN explosion is common. We find that SNe II showing flash ionisation features are not significantly brighter, nor bluer, nor more slowly rising than those without. This implies that CSM interaction does not contribute significantly to their early continuum emission, and that the CSM is likely optically thin. We measured the persistence duration of flash ionisation emission and find that most SNe show flash features for 5\approx 5 days. Rarer events, with persistence timescales >10 days, are brighter and rise longer, suggesting these may be intermediate between regular SNe II and strongly-interacting SNe IIn.
The current developments for future electron-positron colliders are driven by the Particle Flow concept. In these developments, high granularity calorimeters play a central role. This presentation will focus on a new Particle Flow Algorithm (PFA) developed for high granularity calorimeters, and especially for the Semi-Digital Hadronic CALorimeter (SDHCAL) option of the International Large Detector (ILD) project. The first PFA for ILD was PandoraPFA. This new PFA (APRIL) is based on the PandoraPFA Software Development Kit, but implements a different clustering inspired from the ARBOR PFA approach. This proceeding will describe briefly the APRIL algorithm and discuss its performance against that of PandoraPFA.
Heavy New Physics models with lepton flavour-changing interactions are motivated by neutrino masses, and generically induce dipole interactions for leptons, which can be flavour-changing (ljliγl_j\to l_i \gamma) or flavour-diagonal (magnetic and electric dipole moments(edms)). We focus on models with complex couplings, and where the singlet Standard Model leptons ({eRi}\{e_R^i\}) do not interact with the New Physics. In such models, edms are calculated to arise at two loops, despite that complex amplitudes for ljliγl_j\to l_i \gamma appear at one loop. We explore whether the extra loop suppression of edms survives flavour basis rotations that could be induced by flavour-changing NP contributions to the charged lepton mass matrix. We show that one-loop edms vanish in both the mass and Yukawa eigenstate bases.
Recent observational and theoretical studies of the Local Group (LG) dwarf galaxies have highlighted their unique star-formation history, stellar metallicity, gas content, and kinematics. We investigate the commonality of these features by comparing constrained LG and field central dwarf halo simulations in the Numerical Investigation of a Hundred Astrophysical Objects (NIHAO) project. Our simulations, performed with NIHAO-like hydrodynamics which track the evolution of the Milky Way (MW) and M31 along with ~100 dwarfs in the LG, reveal the total gas mass and stellar properties (velocity dispersion, evolution history, etc.) of present-day LG dwarfs to be similar to field systems. However, relative to field galaxies, LG dwarfs have more cold gas in their central parts and more metal-rich gas in the halo stemming from interactions with other dwarfs living in a high-density environment like the LG. Interestingly, the direct impact of massive MW/M31 analogues on the metallicity evolution of LG dwarfs is minimal; LG dwarfs accrete high-metallicity gas mostly from other dwarfs at late times. We have also tested for the impact of metal diffusion on the chemical evolution of LG dwarfs, and found that it does not affect the stellar or gaseous content of LG dwarfs. Our simulations suggest that the stellar components of LG dwarfs offer a unique and unbiased local laboratory for galaxy-formation tests and comparisons, especially against the overall dwarf population in the Universe.
We consider Little String Theories (LSTs) that are engineered by NN parallel M5-branes probing a transverse ZM\mathbb{Z}_M geometry. By exploiting a dual description in terms of F-theory compactified on a toric Calabi-Yau threefold XN,MX_{N,M}, we establish numerous symmetries that leave the BPS partition function ZN,M\mathcal{Z}_{N,M} invariant. They furthemore act in a non-perturbative fashion from the point of view of the low energy quiver gauge theory associated with the LST. We present different group theoretical organisations of these symmetries, thereby generalising the results of [arXiv:1811.03387] to the case of generic M1M \geq 1. We also provide a Mathematica package that allows to represent them in terms of matrices that act linearly on the Kähler parameters of XN,MX_{N,M}. From the perspective of dual realisations of the LSTs the symmetries found here act in highly nontrivial ways: as an example, we consider a formulation of ZN,M\mathcal{Z}_{N,M} in terms of correlation functions of a vertex operator algebra, whose commutation relations are governed by an affine quiver algebra. We show the impact of the symmetry transformations on the latter and discuss invariance of ZN,M\mathcal{Z}_{N,M} from this perspective for concrete examples.
There are no more papers matching your filters at the moment.