Izmir Democracy University
Magnetic Resonance Fingerprinting (MRF) enables simultaneous mapping of multiple tissue parameters such as T1 and T2 relaxation times. The working principle of MRF relies on varying acquisition parameters pseudo-randomly, so that each tissue generates its unique signal evolution during scanning. Even though MRF provides faster scanning, it has disadvantages such as erroneous and slow generation of the corresponding parametric maps, which needs to be improved. Moreover, there is a need for explainable architectures for understanding the guiding signals to generate accurate parametric maps. In this paper, we addressed both of these shortcomings by proposing a novel neural network architecture consisting of a channel-wise attention module and a fully convolutional network. The proposed approach, evaluated over 3 simulated MRF signals, reduces error in the reconstruction of tissue parameters by 8.88% for T1 and 75.44% for T2 with respect to state-of-the-art methods. Another contribution of this study is a new channel selection method: attention-based channel selection. Furthermore, the effect of patch size and temporal frames of MRF signal on channel reduction are analyzed by employing a channel-wise attention.
A method of a Convolutional Neural Networks (CNN) for image classification with image preprocessing and hyperparameters tuning was proposed. The method aims at increasing the predictive performance for COVID-19 diagnosis while more complex model architecture. Firstly, the CNN model includes four similar convolutional layers followed by a flattening and two dense layers. This work proposes a less complex solution based on simply classifying 2D-slices of Computed Tomography scans. Despite the simplicity in architecture, the proposed CNN model showed improved quantitative results exceeding state-of-the-art when predicting slice cases. The results were achieved on the annotated CT slices of the COV-19-CT-DB dataset. Secondly, the original dataset was processed via anatomy-relevant masking of slice, removing none-representative slices from the CT volume, and hyperparameters tuning. For slice processing, a fixed-sized rectangular area was used for cropping an anatomy-relevant region-of-interest in the images, and a threshold based on the number of white pixels in binarized slices was employed to remove none-representative slices from the 3D-CT scans. The CNN model with a learning rate schedule and an exponential decay and slice flipping techniques was deployed on the processed slices. The proposed method was used to make predictions on the 2D slices and for final diagnosis at patient level, majority voting was applied on the slices of each CT scan to take the diagnosis. The macro F1 score of the proposed method well-exceeded the baseline approach and other alternatives on the validation set as well as on a test partition of previously unseen images from COV-19CT-DB dataset.
In here, we introduce a novel approach to enhance the accuracy and efficiency of COVID-19 diagnosis using CT images. Leveraging state-of-the-art Transformer models in computer vision, we employed the base ViT Transformer configured for 224x224-sized input images, modifying the output to suit the binary classification task. Notably, input images were resized from the standard CT scan size of 512x512 to match the model's expectations. Our method implements a systematic patient-level prediction strategy, classifying individual CT slices as COVID-19 or non-COVID. To determine the overall diagnosis for each patient, a majority voting approach as well as other thresholding approaches were employed. This method involves evaluating all CT slices for a given patient and assigning the patient the diagnosis that relates to the thresholding for the CT scan. This meticulous patient-level prediction process contributes to the robustness of our solution as it starts from 2D-slices to 3D-patient level. Throughout the evaluation process, our approach resulted in 0.7 macro F1 score on the COV19-CT -DB validation set. To ensure the reliability and effectiveness of our model, we rigorously validate it on the extensive COV-19 CT dataset, which is meticulously annotated for the task. This dataset, with its comprehensive annotations, reinforces the overall robustness of our solution.
There are no more papers matching your filters at the moment.