National Institute of Biology
Biological systems can be studied at multiple levels of information, including gene, protein, RNA and different interaction networks levels. The goal of this work is to explore how the fusion of systems' level information with temporal dynamics of gene expression can be used in combination with non-linear approximation power of deep neural networks to predict novel gene functions in a non-model organism potato \emph{Solanum tuberosum}. We propose DDeMON (Dynamic Deep learning from temporal Multiplex Ontology-annotated Networks), an approach for scalable, systems-level inference of function annotation using time-dependent multiscale biological information. The proposed method, which is capable of considering billions of potential links between the genes of interest, was applied on experimental gene expression data and the background knowledge network to reliably classify genes with unknown function into five different functional ontology categories, linked to the experimental data set. Predicted novel functions of genes were validated using extensive protein domain search approach.
In this study, explainable machine learning techniques are applied to predict the toxicity of mussels in the Gulf of Trieste (Adriatic Sea) caused by harmful algal blooms. By analysing a newly created 28-year dataset containing records of toxic phytoplankton in mussel farming areas and toxin concentrations in mussels (Mytilus galloprovincialis), we train and evaluate the performance of ML models to accurately predict diarrhetic shellfish poisoning (DSP) events. The random forest model provided the best prediction of positive toxicity results based on the F1 score. Explainability methods such as permutation importance and SHAP identified key species (Dinophysis fortii and D. caudata) and environmental factors (salinity, river discharge and precipitation) as the best predictors of DSP outbreaks. These findings are important for improving early warning systems and supporting sustainable aquaculture practices.
There are no more papers matching your filters at the moment.