Nestyle
High-Resolution Virtual Try-On with Misalignment and Occlusion-Handled Conditions
Image-based virtual try-on aims to synthesize an image of a person wearing a given clothing item. To solve the task, the existing methods warp the clothing item to fit the person's body and generate the segmentation map of the person wearing the item before fusing the item with the person. However, when the warping and the segmentation generation stages operate individually without information exchange, the misalignment between the warped clothes and the segmentation map occurs, which leads to the artifacts in the final image. The information disconnection also causes excessive warping near the clothing regions occluded by the body parts, so-called pixel-squeezing artifacts. To settle the issues, we propose a novel try-on condition generator as a unified module of the two stages (i.e., warping and segmentation generation stages). A newly proposed feature fusion block in the condition generator implements the information exchange, and the condition generator does not create any misalignment or pixel-squeezing artifacts. We also introduce discriminator rejection that filters out the incorrect segmentation map predictions and assures the performance of virtual try-on frameworks. Experiments on a high-resolution dataset demonstrate that our model successfully handles the misalignment and occlusion, and significantly outperforms the baselines. Code is available at this https URL.
View blog
Resources856
K-Hairstyle: A Large-scale Korean Hairstyle Dataset for Virtual Hair Editing and Hairstyle Classification
09 Oct 2021
The hair and beauty industry is a fast-growing industry. This led to the development of various applications, such as virtual hair dyeing or hairstyle transfer, to satisfy the customer's needs. Although several hairstyle datasets are available for these applications, they often consist of a relatively small number of images with low resolution, thus limiting their performance on high-quality hair editing. In response, we introduce a novel large-scale Korean hairstyle dataset, K-hairstyle, containing 500,000 high-resolution images. In addition, K-hairstyle includes various hair attributes annotated by Korean expert hairstylists as well as hair segmentation masks. We validate the effectiveness of our dataset via several applications, such as hair dyeing, hairstyle transfer, and hairstyle classification. K-hairstyle is publicly available at this https URL.
View blog
Resources
There are no more papers matching your filters at the moment.