SKA Organisation
We have conducted two pilot surveys for radio pulsars and fast transients with the Low-Frequency Array (LOFAR) around 140 MHz and here report on the first low-frequency fast-radio burst limit and the discovery of two new pulsars. The first survey, the LOFAR Pilot Pulsar Survey (LPPS), observed a large fraction of the northern sky, ~1.4 x 10^4 sq. deg, with 1-hr dwell times. Each observation covered ~75 sq. deg using 7 independent fields formed by incoherently summing the high-band antenna fields. The second pilot survey, the LOFAR Tied-Array Survey (LOTAS), spanned ~600 sq. deg, with roughly a 5-fold increase in sensitivity compared with LPPS. Using a coherent sum of the 6 LOFAR "Superterp" stations, we formed 19 tied-array beams, together covering 4 sq. deg per pointing. From LPPS we derive a limit on the occurrence, at 142 MHz, of dispersed radio bursts of < 150 /day/sky, for bursts brighter than S > 107 Jy for the narrowest searched burst duration of 0.66 ms. In LPPS, we re-detected 65 previously known pulsars. LOTAS discovered two pulsars, the first with LOFAR or any digital aperture array. LOTAS also re-detected 27 previously known pulsars. These pilot studies show that LOFAR can efficiently carry out all-sky surveys for pulsars and fast transients, and they set the stage for further surveying efforts using LOFAR and the planned low-frequency component of the Square Kilometer Array.
The Rapid ASKAP Continuum Survey (RACS) is the first large-area survey to be conducted with the full 36-antenna Australian Square Kilometre Array Pathfinder (ASKAP) telescope. RACS will provide a shallow model of the ASKAP sky that will aid the calibration of future deep ASKAP surveys. RACS will cover the whole sky visible from the ASKAP site in Western Australia, and will cover the full ASKAP band of 7001800700-1800 MHz. The RACS images are generally deeper than the existing NRAO VLA Sky Survey (NVSS) and Sydney University Molonglo Sky Survey (SUMSS) radio surveys and have better spatial resolution. All RACS survey products will be public, including radio images (with 15\sim 15 arcsecond resolution) and catalogues of about three million source components with spectral index and polarisation information. In this paper, we present a description of the RACS survey and the first data release of 903 images covering the sky south of declination +41+41^\circ made over a 288 MHz band centred at 887.5 MHz.
The Square Kilometre Array (SKA), currently under design, will be a transformational facility for studying the Universe at centimetre and metre wavelengths in the next decade and beyond. This paper provides the current best estimate of the anticipated performance of SKA Phase 1 (SKA1), using detailed design work, before actual on-sky measurements have been made. It will be updated as new information becomes available. The information contained in this paper takes precedent over any previous documents.
We have performed a new search for radio pulsars in archival data of the intermediate and high Galactic latitude parts of the Southern High Time Resolution Universe pulsar survey. This is the first time the entire dataset has been searched for binary pulsars, an achievement enabled by GPU-accelerated dedispersion and periodicity search codes nearly 50 times faster than the previously used pipeline. Candidate selection was handled entirely by a Machine Learning algorithm, allowing for the assessment of 17.6 million candidates in a few person-days. We have also introduced an outlier detection algorithm for efficient radio-frequency interference (RFI) mitigation on folded data, a new approach that enabled the discovery of pulsars previously masked by RFI. We discuss implications for future searches, particularly the importance of expanding work on RFI mitigation to improve survey completeness. In total we discovered 23 previously unknown sources, including 6 millisecond pulsars and at least 4 pulsars in binary systems. We also found an elusive but credible redback candidate that we have yet to confirm.
This paper discusses compelling science cases for a future long-baseline interferometer operating at millimeter and centimeter wavelengths, like the proposed Next Generation Vary Large Array (ngVLA). We report on the activities of the Cradle of Life science working group, which focused on the formation of low- and high-mass stars, the formation of planets and evolution of protoplanetary disks, the physical and compositional study of Solar System bodies, and the possible detection of radio signals from extraterrestrial civilizations. We propose 19 scientific projects based on the current specification of the ngVLA. Five of them are highlighted as possible Key Science Projects: (1) Resolving the density structure and dynamics of the youngest HII regions and high-mass protostellar jets, (2) Unveiling binary/multiple protostars at higher resolution, (3) Mapping planet formation regions in nearby disks on scales down to 1 AU, (4) Studying the formation of complex molecules, and (5) Deep atmospheric mapping of giant planets in the Solar System. For each of these projects, we discuss the scientific importance and feasibility. The results presented here should be considered as the beginning of a more in-depth analysis of the science enabled by such a facility, and are by no means complete or exhaustive.
We present the Multifrequency Snapshot Sky Survey (MSSS), the first northern-sky LOFAR imaging survey. In this introductory paper, we first describe in detail the motivation and design of the survey. Compared to previous radio surveys, MSSS is exceptional due to its intrinsic multifrequency nature providing information about the spectral properties of the detected sources over more than two octaves (from 30 to 160 MHz). The broadband frequency coverage, together with the fast survey speed generated by LOFAR's multibeaming capabilities, make MSSS the first survey of the sort anticipated to be carried out with the forthcoming Square Kilometre Array (SKA). Two of the sixteen frequency bands included in the survey were chosen to exactly overlap the frequency coverage of large-area Very Large Array (VLA) and Giant Metrewave Radio Telescope (GMRT) surveys at 74 MHz and 151 MHz respectively. The survey performance is illustrated within the "MSSS Verification Field" (MVF), a region of 100 square degrees centered at J2000 (RA,Dec)=(15h,69deg). The MSSS results from the MVF are compared with previous radio survey catalogs. We assess the flux and astrometric uncertainties in the catalog, as well as the completeness and reliability considering our source finding strategy. We determine the 90% completeness levels within the MVF to be 100 mJy at 135 MHz with 108" resolution, and 550 mJy at 50 MHz with 166" resolution. Images and catalogs for the full survey, expected to contain 150,000-200,000 sources, will be released to a public web server. We outline the plans for the ongoing production of the final survey products, and the ultimate public release of images and source catalogs.
We present a study of the spectral properties of 441 pulsars observed with the Parkes radio telescope near the centre frequencies of 728, 1382 and 3100 MHz. The observations at 728 and 3100 MHz were conducted simultaneously using the dual-band 10-50cm receiver. These high-sensitivity, multi-frequency observations provide a systematic and uniform sample of pulsar flux densities. We combine our measurements with spectral data from the literature in order to derive the spectral properties of these pulsars. Using techniques from robust regression and information theory we classify the observed spectra in an objective, robust and unbiased way into five morphological classes: simple or broken power law, power law with either low or high-frequency cut-off and log-parabolic spectrum. While about 79%79 \% of the pulsars that could be classified have simple power law spectra, we find significant deviations in 73 pulsars, 35 of which have curved spectra, 25 with a spectral break and 10 with a low-frequency turn-over. We identify 11 gigahertz-peaked spectrum (GPS) pulsars, with 3 newly identified in this work and 8 confirmations of known GPS pulsars; 3 others show tentative evidence of GPS, but require further low-frequency measurements to support this classification. The weighted mean spectral index of all pulsars with simple power law spectra is $-1.60 \pm 0.03$. The observed spectral indices are well described by a shifted log-normal distribution. The strongest correlations of spectral index are with spin-down luminosity, magnetic field at the light-cylinder and spin-down rate. We also investigate the physical origin of the observed spectral features and determine emission altitudes for three pulsars.
1
The measurement of Zeeman splitting in spectral lines---both in emission and absorption---can provide direct estimates of the magnetic field strength and direction in atomic and molecular clouds, both in our own Milky Way and in external galaxies. This method will probe the magnetic field in the warm and cold neutral components of the interstellar medium, providing a complement to the extensive SKA Faraday studies planning to probe the field in the ionized components.
The nearby ultra-luminous infrared galaxy (ULIRG) Arp 220 is an excellent laboratory for studies of extreme astrophysical environments. For 20 years, Very Long Baseline Interferometry (VLBI) has been used to monitor a population of compact sources thought to be supernovae (SNe), supernova remnants (SNRs) and possibly active galactic nuclei (AGNs). Using new and archival VLBI data spanning 20 years, we obtain 23 high-resolution radio images of Arp 220 at wavelengths from 18 cm to 2 cm. From model-fitting to the images we obtain estimates of flux densities and sizes of all detected sources. We detect radio continuum emission from 97 compact sources and present flux densities and sizes for all analysed observation epochs. We find evidence for a LD-relation within Arp 220, with larger sources being less luminous. We find a compact source LF n(L)Lβn(L)\propto L^\beta with β=2.19±0.15\beta=-2.19\pm0.15, similar to SNRs in normal galaxies. Based on simulations we argue that there are many relatively large and weak sources below our detection threshold. The observations can be explained by a mixed population of SNe and SNRs, where the former expand in a dense circumstellar medium (CSM) and the latter interact with the surrounding interstellar medium (ISM). Nine sources are likely luminous, type IIn SNe. This number of luminous SNe correspond to few percent of the total number of SNe in Arp 220 which is consistent with a total SN-rate of 4 yr1^{-1} as inferred from the total radio emission given a normal stellar initial mass function (IMF). Based on the fitted luminosity function, we argue that emission from all compact sources, also below our detection threshold, make up at most 20\% of the total radio emission at GHz frequencies.
Fast radio bursts (FRBs) are millisecond pulses of radio emission of seemingly extragalactic origin. More than 50 FRBs have now been detected, with only one seen to repeat. Here we present a new FRB discovery, FRB 110214, which was detected in the high latitude portion of the High Time Resolution Universe South survey at the Parkes telescope. FRB 110214 has one of the lowest dispersion measures of any known FRB (DM = 168.9±\pm0.5 pc cm3^{-3}), and was detected in two beams of the Parkes multi-beam receiver. A triangulation of the burst origin on the sky identified three possible regions in the beam pattern where it may have originated, all in sidelobes of the primary detection beam. Depending on the true location of the burst the intrinsic fluence is estimated to fall in the range of 50 -- 2000 Jy ms, making FRB 110214 one of the highest-fluence FRBs detected with the Parkes telescope. No repeating pulses were seen in almost 100 hours of follow-up observations with the Parkes telescope down to a limiting fluence of 0.3 Jy ms for a 2-ms pulse. Similar low-DM, ultra-bright FRBs may be detected in telescope sidelobes in the future, making careful modeling of multi-beam instrument beam patterns of utmost importance for upcoming FRB surveys.
California Institute of Technology logoCalifornia Institute of TechnologyUniversity of OsloKyungpook National UniversityUniversity of Waterloo logoUniversity of WaterlooHarvard University logoHarvard UniversityNational Astronomical Observatory of JapanChinese Academy of Sciences logoChinese Academy of SciencesUniversity of Science and Technology of China logoUniversity of Science and Technology of Chinathe University of Tokyo logothe University of TokyoUniversity of Michigan logoUniversity of MichiganCornell University logoCornell UniversityOkayama UniversityKorea Astronomy and Space Science InstituteNational Taiwan Normal UniversityPerimeter Institute for Theoretical Physics logoPerimeter Institute for Theoretical PhysicsAalto University logoAalto UniversityUniversity of HertfordshireThe Graduate University for Advanced Studies (SOKENDAI)Institute of Astronomy and Astrophysics, Academia SinicaChalmers University of Technology logoChalmers University of TechnologyUniversitat de ValènciaNational Radio Astronomy ObservatoryJet Propulsion LaboratoryMax-Planck-Institut für RadioastronomieBrigham Young UniversityUniversity of MassachusettsEuropean Southern Observatory logoEuropean Southern ObservatoryJoint Institute for VLBI ERICPontificia Universidad Católica de ChileEast Asian ObservatoryRhodes UniversityInstituto de Astrofísica de Andalucía-CSICJapan Aerospace Exploration AgencyJames Clerk Maxwell TelescopeOnsala Space ObservatoryUniversidad de GuadalajaraUniversity of ChileAcademia Sinica Institute of Astronomy and Astrophysics (ASIAA)National Institute of Technology, Hachinohe CollegeInstitut de RadioAstronomie MillimétriqueINAF–Istituto di RadioastronomiaAalto University Metsähovi Radio ObservatoryMassachusetts Institute of Technology, Haystack ObservatoryUniversidad de ConcepciٞnMizusawa VLBI Observatory, National Astronomical Observatory of JapanTokyo Electron Technology SolutionsDominion Radio Astrophysical ObservatorySKA OrganisationAtacama Pathfinder Experiment (APEX)Herzberg AstrophysicsAssociated Universities, Inc.Key Laboratory for Research in Galaxies and Cosmology, Chinese Academy of SciencesUniversit Di Bologna
The nearby radio galaxy M87 is a prime target for studying black hole accretion and jet formation^{1,2}. Event Horizon Telescope observations of M87 in 2017, at a wavelength of 1.3 mm, revealed a ring-like structure, which was interpreted as gravitationally lensed emission around a central black hole^3. Here we report images of M87 obtained in 2018, at a wavelength of 3.5 mm, showing that the compact radio core is spatially resolved. High-resolution imaging shows a ring-like structure of 8.4_{-1.1}^{+0.5} Schwarzschild radii in diameter, approximately 50% larger than that seen at 1.3 mm. The outer edge at 3.5 mm is also larger than that at 1.3 mm. This larger and thicker ring indicates a substantial contribution from the accretion flow with absorption effects in addition to the gravitationally lensed ring-like emission. The images show that the edge-brightened jet connects to the accretion flow of the black hole. Close to the black hole, the emission profile of the jet-launching region is wider than the expected profile of a black-hole-driven jet, suggesting the possible presence of a wind associated with the accretion flow.
The radio source at the center of the galaxy cluster Abell 2626, also known as the Kite, stands out for its unique morphology composed of four, symmetric arcs. Previous studies have probed the properties of this source at different frequencies and its interplay with the surrounding thermal plasma, but the puzzle of its origin is still unsolved. We use new LOw Frequency ARray (LOFAR) observation from the LOFAR Two-meter Sky Survey at 144 MHz to investigate the origin of the Kite.} We present a detailed analysis of the new radio data which we combined with archival radio and X-ray observations. We have produced a new, resolved spectral index map of the source with a resolution of 7'' and we studied the spatial correlation of radio and X-ray emission to investigate the interplay between thermal and non-thermal plasma. The new LOFAR data have changed our view of the Kite by discovering two steep-spectrum (\alpha&lt;-1.5) plumes of emission connected to the arcs. The spectral analysis shows, for the first time, a spatial trend of the spectrum along the arcs with evidence of curved synchrotron spectra and a spatial correlation with the X-ray surface brightness. On the basis of our results, we propose that the Kite was originally an X-shaped radio galaxy whose fossil radio plasma, after the end of the activity of the central active galactic nucleus, has been compressed due to motions of the thermal plasma in which it is encompassed. The interplay between the compression and advection of the fossil plasma, with the restarting of the nuclear activity of the central galaxy, could have enhanced the radio emission of the fossil plasma producing the arcs of the Kite. We present also the first, low-frequency observation of a jellyfish galaxy in the same field, in which we detect extended, low-frequency emission without a counterpart at higher frequencies.
Fast Radio Bursts (FRBs) are bright, extragalactic radio pulses whose origins are still unknown. Until recently, most FRBs have been detected at frequencies greater than 1 GHz with a few exceptions at 800 MHz. The recent discoveries of FRBs at 400 MHz from the Canadian Hydrogen Intensity Mapping Experiment (CHIME) telescope has opened up possibilities for new insights about the progenitors while many other low frequency surveys in the past have failed to find any FRBs. Here, we present results from a FRB survey recently conducted at the Jodrell Bank Observatory at 332 MHz with the 76-m Lovell telescope for a total of 58 days. We did not detect any FRBs in the survey and report a 90%\% upper limit of 5500 FRBs per day per sky for a Euclidean Universe above a fluence threshold of 46 Jy ms. We discuss the possibility of absorption as the main cause of non-detections in low frequency (< 800 MHz) searches and invoke different absorption models to explain the same. We find that Induced Compton Scattering alone cannot account for absorption of radio emission and that our simulations favour a combination of Induced Compton Scattering and Free-Free Absorption to explain the non-detections. For a free-free absorption scenario, our constraints on the electron density are consistent with those expected in the post-shock region of the ionized ejecta in Super-Luminous SuperNovae (SLSNe).
We present a submillimetre continuum survey ('SCUBA2 High rEdshift bRight quasaR surveY', hereafter SHERRY) of 54 high redshift quasars at 5.63.5σ5.63.5\sigma). The new SHERRY detections indicate far-infrared (FIR) luminosities of 3.5×1012\rm 3.5\times10^{12} to 1.4×1013\rm 1.4\times10^{13} LL_{\odot}, implying extreme star formation rates of 90 to 1060 MM_{\odot} yr1^{-1} in the quasar host galaxies. Compared with z=z = 2-5 samples, the FIR luminous quasars (L_{\rm FIR} &gt; 10^{13}\,L_{\odot}) are more rare at z6z \sim 6. The optical/near-infrared (NIR) spectra of these objects show 11% (6/54) of the sources have weak Lyα\alpha, emission line features, which may relate to different sub-phases of the central active galactic nuclei (AGNs). Our SCUBA2 survey confirms the trend reported in the literature that quasars with submillimeter detections tend to have weaker ultraviolet (UV) emission lines compared to quasars with nondetections. The connection between weak UV quasar line emission and bright dust continuum emission powered by massive star formation may suggest an early phase of AGN-galaxy evolution, in which the broad line region is starting to develop slowly or is shielded from the central ionization source, and has unusual properties such as weak line features or bright FIR emission.
Rotating radio transients (RRATs) are a sub-class of pulsars characterized by sporadic emission and thus can generally only be studied by analysis of their single-pulses. Here we present a single-pulse analysis using 11 years of timing data at 1400~MHz of three RRATs, PSRs~J1819-1458, J1317-5759, and J1913++1330. We perform a spectral analysis on the single-pulses of these RRATs for the first time, finding their mean spectral indices to be 1.1±0.1-1.1 \pm 0.1, 0.6±0.1-0.6 \pm 0.1, and 1.2±0.2-1.2 \pm 0.2 respectively, within the known range of pulsar spectral indices. We find no evidence for narrowband features as seen for FRB~121102. However, we find the spread of single-pulse spectral indices for these RRATs (ranging from 7-7 to +4+4) to be larger than has been seen in other pulsars, with the exception of the Crab pulsar. We also analyze the time between detected pulses, or wait-time, and find that the pulses are not random and cluster around wait-times of a few pulse periods as well as 25\sim 25 pulse periods for PSRs~J1819-1458 and J1317-5759. Additionally we find that there is no correlation between the wait-time and pulse flux density. Finally we find that the distribution of the pulse energy for PSRs~J1317-5759 and J1913++1330 are log-normal, while that of PSR~J1819-1458 is log-normal with possible evidence of an additional power-law component.
Searches for optical transients are usually performed with a cadence of days to weeks, optimised for supernova discovery. The optical fast transient sky is still largely unexplored, with only a few surveys to date having placed meaningful constraints on the detection of extragalactic transients evolving at sub-hour timescales. Here, we present the results of deep searches for dim, minute-timescale extragalactic fast transients using the Dark Energy Camera, a core facility of our all-wavelength and all-messenger Deeper, Wider, Faster programme. We used continuous 20s exposures to systematically probe timescales down to 1.17 minutes at magnitude limits g>23g > 23 (AB), detecting hundreds of transient and variable sources. Nine candidates passed our strict criteria on duration and non-stellarity, all of which could be classified as flare stars based on deep multi-band imaging. Searches for fast radio burst and gamma-ray counterparts during simultaneous multi-facility observations yielded no counterparts to the optical transients. Also, no long-term variability was detected with pre-imaging and follow-up observations using the SkyMapper optical telescope. We place upper limits for minute-timescale fast optical transient rates for a range of depths and timescales. Finally, we demonstrate that optical gg-band light curve behaviour alone cannot discriminate between confirmed extragalactic fast transients such as prompt GRB flashes and Galactic stellar flares.
We examine the proposal that the dispersion measures (DMs) and Faraday rotation measures (RMs) of extragalactic linearly-polarized fast radio bursts (FRBs) can be used to probe the intergalactic magnetic field (IGMF) in filaments of galaxies. The DM through the cosmic web is dominated by contributions from the warm-hot intergalactic medium (WHIM) in filaments and from the gas in voids. On the other hand, RM is induced mostly by the hot medium in galaxy clusters, and only a fraction of it is produced in the WHIM. We show that if one excludes FRBs whose sightlines pass through galaxy clusters, the line-of-sight strength of the IGMF in filaments, BB_{||}, is approximately C(1+z/fDM)(RM/DM)C(\langle 1+z \rangle/f_{DM})(RM/DM), where CC is a known constant. Here, the redshift of the FRB is not required to be known; fDMf_{DM} is the fraction of total DM due to the WHIM, while 1+z\langle 1+z \rangle is the redshift of interevening gas weighted by the WHIM gas density, both of which can be evaluated for a given cosmology model solely from the DM of an FRB. Using data on structure formation simulations and a model IGMF, we show that C(1+z/fDM)(RM/DM)C(\langle 1+z \rangle/f_{DM})(RM/DM) closely reproduces the density-weighted line-of-sight strength of the IGMF in filaments of the large-scale structure.
The initial results from timing observations of PSR J1141-6545, a relativistic pulsar white-dwarf binary system, are presented. Predictions from the timing baseline hint at the most stringent test of gravity by an asymmetric binary yet. The timing precision has been hindered by the dramatic variations of the pulse profile due to geodetic precession, a pulsar glitch and red timing noise. Methods to overcome such timing irregularities are briefly presented along with preliminary results from the test of the General Theory of Relativity (GR) from this pulsar
We present the latest and final version of the movie of the SiO masers toward the Mira variable TX Cam. The new version consists of 112 frames (78 successfully reduced epochs) with data covering almost three complete stellar cycles between 24 May 1997 to 25 January 2002, observed with the VLBA. In this paper we examine the global morphology, kinematics and variability of the masering zone. The morphology of the emission is confined in a structure that usually resembles a ring or an ellipse, with occasional deviations due to localised phenomena. The ring appears to be contracting and expanding, although for the first cycle contraction is not observed. The width and outer boundary of the masering zone follow the stellar pulsation. Our data seem to be consistent with a shock being created once per stellar cycle at maximum that propagates with a velocity of ~7 km/s. The difference in velocities along different axes strongly suggests that the outflow in TX Cam is bipolar. The contribution of projection is examined and our results are compared with the latest theoretical model.
Systems Engineering (SE) is the set of processes and documentation required for successfully realising large-scale engineering projects, but the classical approach is not a good fit for software-intensive projects, especially when the needs of the different stakeholders are not fully known from the beginning, and requirement priorities might change. The SKA is the ultimate software-enabled telescope, with enormous amounts of computing hardware and software required to perform its data reduction. We give an overview of the system and software engineering processes in the SKA1 development, and the tension between classical and agile SE.
There are no more papers matching your filters at the moment.